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Abstract— The phenomenon of dust that occurs in Iraq is one of the phenomena that cannot be completely controlled or partially 
processed in a short time. It also works to know how some climatic factors such as the average wind speed, relative humidity, 
atmospheric pressure above sea level, and the maximum temperature which represent explanatory (independent) variables 
�X�, X�, X�, X��, respectively. The effects on the number of occurrences of dust storms represent the adopted variable (Y) in Baghdad 
Governorate for the period from 2008 to mid-2013. The researchers used the Generalized Partial Linear Regression Model (GPLRM) 
consist of fourteen models, after determining the best link function for each model. Then we compared these models to determine the 
best model that represents this data with the best representation using the Akaike information criterion (AIC), the Schwartz 
information criterion (BIC), and the determination Coefficient criterion �	
 �. We also used the program (i- xplore) in the calculation, 
and we have concluded that the best model is the model in which the variable ��
� relative humidity and ��� the maximum 
temperature in the parametric part, i.e., linear and stable. On the other hand, the variable ���� average wind speed and the 
variable���� atmospheric pressure above sea level are non-parametric and their behavior is non-linear and unstable. The researchers 
consider that Baghdad Governorate suffers from this negative phenomenon as well as in general in Iraq. Besides, the effect of the 
variable ��
� relative humidity is a decreasingly negative effect, while the effect of the variable ��� maximum temperature, it is an 
increasingly positive effect. 
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I. INTRODUCTION 

The Generalized partial linear regression model is a semi-
parametric model representing the extended state of the 
semi-parametric models. It integrates the parametric models 
and the non-parametric models. It also represents an 
extension of the concept of expanded linear regression 
(GLMz) and that the methods for estimating this model 
depend mainly on the methods of estimating the extended 
linear regression. This model is applied to the data of the 
number of dust storms to study the effect of the explanatory 
variables (average wind speed, relative humidity, 
atmospheric pressure above sea level, and maximum 
temperature) on the dependent variable (number of dust 
storms) [1], [2]. Several models are specified of (GPLRM) 
models, and several link functions are used for each model. 
The best link function is determined. Then the best model 
representing these data is best represented using the criteria 
BIC, AIC,R2 as well as knowing which explanatory 
variables behave linearly and parametrically and any of the 
variables that behave non-linearly and non-parametrically 
[3], [4] . 

II. MATERIAL AND METHOD 

A. General Partial Linear Regression Model (GPLRM) 

The generalized partial linear regression model (GPLRM) 
is the extension of the concept of extended linear regression 
(GLMZ) and its relationship to the semi-parameter model 
and that its estimation methods depend mainly on the 
estimate of (GLMZ). The mathematical formula for the 
(GPLRM)  [5]–[7] is as follows: 

 E�Y/ X, Z� = G�X�β + m�Z�� (1) 

Where: 
• Y: Response variable vector. 
• X�β: It represents a linear combination of the function of the 

part parametric. 
• m�Z� : It represents the function of the part non-parametric. 
• G(.): Link function. 

The principle of estimating this model is based on two 
common methods used by researchers: 

• Estimate of  β� with m�. � known. 
• Estimate m�. � with β� known. 
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Some studies have shown the expectation and variance of 
the dependent variable Y [9], [10] by the following formula: 

 E�Y/ X, Z� = μ = G�η� = G�X�β + m�Z�� (2) 

 Var�Y/ X, Z� = σ� Var�μ� (3) 

Where: 

σ� : dispersion parameter. 
Accordingly, the researchers here conduct some of the 

following estimation methods, due to the importance of the 
(GPLRM)  among the semi-parametric models. 

B. Estimation Method of General Partial Linear Regression 
Model  

For the purpose of estimating the model in reference to 
equation (1), the researchers used the Profile Likelihood 
Method. It is based on the separation of the estimation 
problem into a parametric part and a non-parametric part. 
The Simpler Profile Likelihood Method is one of the 
methods for estimating the model according to its own 
conditions, which we will explain in more detail so that we 
can estimate the model. 

C. Profile Likelihood Method 

A previous study separated the estimation problem into a 
parametric part and a non-parametric part. Since the general 
greatest possible function is inaccurate in semi-parametric 
models, the basic method of estimation is determined by β 

and then estimated by m$� . � depending on β which is used 

in building the greatest possible special structure [10]–[12]  
Assuming the parameter Likelihood function is: 

L�β� =  & L'm(,$ + Y)
*

(+�
    

m(,$ = G ,X�β + m$ �Z(�- 

 
and the function in the equation is the one that is maximized 
to estimate β ,and that the paved Likelihood function 

L./0 �1� =  & k.�Z − Z(�L'm(,$ , Y) 

where 

m(,$ = G ,X�β + m$ �Z(�- 

The function in the equation is the one that is maximized 
to be estimated as m$ �Z� ,and  k.�Z − Z(�  represents the 

weight in the multivariate kernel function, and H represents 
a bandwidth matrix b.m. [13], [14]. 

If the maximized Likelihood partial function �Quasi −
likelihood� or function Likelihood logarithmic variable Y 
and the valuated η  is ℓ(�η� = L �G�η� , y(� . Thus, we 
expressed the first and second derivative of the function 

ℓ(�η� for η with both �ℓ?? ( , ℓ? ( � respectively by compensating 
m@ = m$ �Z(� . Maximization of the Likelihood paved 
function in the equation is necessary for a solution 0 =
 ∑ ℓ? ( � X(�β + m@*(+� �K.' Z( − Z@)  , concerning m@, whereas 
β maximizing the function likelihood parametric equation is 
necessary to resolve 0 =  ∑ ℓ? ( � X(�β + m@*(+� �� X( +  mD ́ �. 

These two solutions lead to an estimate algorithm  
�GPLRM� 

β*IJ =  βKLM −  BO� & ℓ? ( � X(�β + m@
*

(+�
�XP 

where B is the �Hessian� matrix and is described 

B =  ∑ ℓ?? ( � X(�β + m@*(+� �XP(X(�  , and  XP@ be described 
XP( =  X@ + mS         ́  

= X@ − ∑ ℓ?? ( � X(�β + m@*(+� �K.' Z( − Z@)X(
∑ ℓ?? ( � X(�β + m@*(+� �K.' Z( − Z@)

 

m@*IJ =  m@ − ∑ ℓ? ( � X(�β + m@*(+� �K.' Z( − Z@)
∑ ℓ?? ( � X(�β + m@*(+� �K.' Z( − Z@)

  
 

These formulas are complex, but when considering x as 
�Design Matrix�, it can be rewritten β*IJ  , in matrix form 
[15]. 

 β*IJ =  �XX�WXP�O� XX�WZZ (4) 

D. Simpler Profile Likelihood Method 

When the linking function G�. � in the form of �Identity�, 
and the distribution of Y is normal, it has been shown by 
�Hardle, Muller, Magda�  that a simplified method of 
estimation can be determined using the simpler profile 
likelihood method  , where: 

ℓ′( = − 'Y( − X(� − m@)
σ�  

ℓ′′( = − 1
σ� 

S = K.'Z( − Z@)
∑ K.'Z( − Z@)

     , and for matrix paved non − parametric 

 

m@*IJ = ∑'Y( − X(�)K.'Z( − Z@)
∑ K.'Z( − Z@)

    , then estimate for part non
− parametric   

m*IJ = S cY − Xβd            , and matrices forms        
m*IJ = em�*IJ ∗  m�*IJ ∗ … ∗  m**IJh                           , where 

β*IJ = 'XX�XX)O�XX�YX               , and estimate for part parametric  
where 
XX = �I − S�X 
YX = �I − S�Y 
and these represent estimates �Speckman� for model �PLM� 
going back to the style of estimate �GLM�, in that, all steps 
of the iterative method can be found in a method �WLS� , 
then it can estimate �GPLRM�  by weighted linear partial 
estimation method [16], [17]  

The link function is the function that connects the first 
two parts, the first part of the random complex, which is 
represented by the random variable y, which has a 
distribution that belongs to the distributions of the 
exponential family. The second part is the regular complex 
which is represented by the formula of the arithmetic mean 
that is in the form of a linear structure known as a linear 
predictor in terms of explanatory variables [20], [21]. The 
link function is a monotonous function (ascending or 
descending), linear or nonlinear, and its form is as in 
equation (5). 

 η( = G�µ� = G�X�β�  (5) 
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TABLE I 
THE DISTRIBUTIONS OF THE EXPONENTIAL FAMILY - THE LINK FUNCTION 

TYPE  

kl =  m�µ� =  µ nopqrlrs 

kl =  m�µ� =  tuv�µ� tuv 

kl =  m�µ� = wuv �
� − x 

tuvlr 

kl =  m�µ� = �
x 

	pylz{uy|w 

kl = m�µ� = wuv�−wuv�� − µ�� }u~z wuv − wuv 

kl = m�µ� = �
x
 

	pylz{uy|w
 

E. Dust Storms 

According to the introductory definition, low visibility is 
less than (1000 m) and the wind speed is more than (7 m / s), 
and dust storms can be defined from a geographical point of 
view as: a cloud of mobile soil with air in which the density 
of the dust increases so that the visibility range is less than (1 
km) with wind speed (7 m / s) or more . Dust storms vary in 
intensity, size, intensity, and height. They range from (1-
5500 m) and the distances covered by them ranging from 
tens of kilometers to thousands of kilometers, thus traveling 
across the continents and having the ability to carry large 
amounts of dust up to (4000 tons / mile) [18]. Dust also 
varies in terms of its composition and density, depending on 
the origin and the speed of it carrying wind. Dust pollutes 
the atmosphere and is harmful to public health, especially if 
the clay atoms are of a needle type. Likewise, it badly affects 
air, land, sea, and neighborhood transportation of all kinds 
and has many bad effects on other vital facilities [19]. 
Microns with several atoms are characterized by their 
relatively large size, where some diameters reach 100 
microns and are present in the lower levels of the storm 
because of their relative gravity where the wind cannot carry 
them to higher levels when brown or gray depending on the 
color of dust carried by the wind during the storm. After a 
calm wind storm, dust turns to dust stuck to fading and then 
deposited on the Earth's surface by gravity [3]. 

III.  RESULTS AND DISCUSSION 

The data obtained is the number of times of the dust 
storms, the dependent variable, Y, and the explanatory 
variables, represent some climatic factors, which represent 
the average wind speed �X�� , relative humidity �X�� , 
atmospheric pressure above sea level �X�� and the maximum 
temperature �X�� These data were recorded and taken from 
the Weather Service Seismic monitoring - Climate section 
located in the Ministry of Transport and Communications 
building, which represent monthly data for the period from 
2008 to mid-2013 at (66) views. 

A. Building (GPLRM) in Case One Variable Non-
Parametric 

The non-parametric part consists of only one explanatory 
variable, while the rest of the explanatory variables exhibit a 
linear behavior, and the parameter part. And according to the 
equation (1) we will have four models of generalized partial 
linear regression models, and the beam width for each of 
these explanatory variables is as follows: 

TABLE II 
 THE BANDWIDTH OF EACH EXPLANATORY VARIABLE  

explanatory variable (x's) Bandwidth 

�X�� average wind speed 0.68249422 

�X�� relative humidity 17.908332 

�X�� atmospheric pressure above sea level 7.8191514 

�X�� maximum temperature 11.445098 

 
After finding the Bandwidth (B.W.) for each explanatory 

variable (X�, X�, X�, X�) we will estimate each model using 
the link functions according to the following distributions: 
Then we determine the link function that gives us the best 
estimate of the model, using the coefficient of determination 
�R��  Akaik's information criterion �AIC�  Schwarz's 
Bayesian information criterion �BIC�  according to the 
following Table 3. 

 

TABLE III 
 LINK FUNCTIONS FOR THE FOLLOWING DISTRIBUTIONS USED TO ESTIMATE THE GPLR MODELS WHEN WE HAVE ONE VARIABLE , NOT PARAMETRIC 

Negative 
Binomial 

Inverse 
Gaussian 

Gamma Poisson Gaussian Link functions  parametric 
variables 

--- --- --- --- 0.7031 ���� �� 
--- --- --- --- 377.3921 (AIC) 
--- --- --- --- 390.291 (BIC) 
0.0137 --- 0.0008 0.266 0.7109 ���� �
 
525.9445 --- 754.4513 380.1146 375.8568 (AIC) 
538.769 --- 767.2379 393.1231 388.9691 (BIC) 
--- --- --- --- 0.695 ���� �� 
--- --- --- --- 379.7863 (AIC) 
--- --- --- --- 393.3289 (BIC) 
--- --- --- --- 0.7112 ���� � 
--- --- --- 9916.80 377.9291 (AIC) 
--- --- --- 9932.109 393.2644 (BIC) 

 
The non-parametric part consists of two explanatory 
variables, non-linear behavior, whereas the other two 

explanatory variables will be linear and constitute the 
parameter part. According to equation (1) we will have six 
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models of generalized partial linear regression models and 
the bandwidth for each of these explanatory variables are 
presented in Table 4. After finding the Bandwidth (B.W.) for 
each explanatory variable (X�, X�, X�, X�) we estimated each 
model using the link functions according to the distributions 
in Table 5. Then we determine the link function that gives us 
the best estimate of the model, using the coefficient of 
determination �R��  Akaik's information criterion �AIC� 
Schwarz's Bayesian information criterion �BIC� according to 
the following table 5 

TABLE IV 
 THE BANDWIDTH OF EACH EXPLANATORY VARIABLE  

explanatory variable (x's) Bandwidth 
�X�� average wind speed 0.78020278 
�X�� relative humidity 20.472159 
�X�� atmospheric pressure above sea level 8.9385719 
�X�� maximum temperature 13.083624 

 

 
TABLE V 

 LINK FUNCTIONS FOR THE FOLLOWING DISTRIBUTIONS USED TO ESTIMATE THE GPLR MODELS WHEN THE TWO VARIABLES ARE NOT PARAMETRIC 

Negative 
Binomial 

Inverse 
Gaussian 

Gamma Poisson Gaussian Link 
functions 

parametric 
variables 

0.0136  --- 0.0008 0.2651 0.7139 ���� ���
 
526.1562 Nan 753.2183 380.702 375.352 (AIC) 
539.1597 Nan 766.1919 393.8851 388.8623 (BIC) 
 ---  ---  ---  --- 0.7071 ���� ���� 
 ---  ---  ---  --- 380.5229 (AIC) 
 ---  ---  ---  --- 397.5759 (BIC) 
0.0134  --- 0.0008 0.2595 0.7031 ���� ��� 
528.1408  --- 751.2303 385.5506 380.0667 (AIC) 
543.2076  --- 766.2441 400.9524 395.7379 (BIC) 
 ---  ---  ---  --- 0.7521 ���� �
�� 
 ---  ---  ---  --- 376.5108 (AIC) 
 ---  ---  ---  --- 400.6324 (BIC) 
0.0144  --- 0.0008 0.2801 0.7623 ���� �
� 
536.4391  --- 764.867 384.0618 374.9476 (AIC) 
561.1446  --- 789.4916 409.1621 400.2648 (BIC) 
 ---  ---  ---  --- 0.7446 ���� ��� 
 ---  ---  ---  --- 379.0103 (AIC) 
 ---  ---  ---  --- 403.6591 (BIC) 

 

B. Building (GPLRM) in Case Three Variables  

The non-parametric component consists of three 
explanatory variables that exhibit non-linear behavior, 
whereas the remaining explanatory variable exhibits a linear 
behavior of the parameter segment's component. According 
to equation (1) we will have four models of generalized 
partial linear regression models, and the bandwidth for each 
of these explanatory variables, as in Table 6. After finding 
the Bandwidth (B.W.) for each explanatory variable (X� , 
X� ,  X� , X� ) we will estimate each model using the link 
functions according to the following distributions: 

Then we determine the link function that gives us the best 
estimate of the model, using the coefficient of determination 
�R��  Akaik's information criterion �AIC�  Schwarz's 
Bayesian information criterion �BIC�, as in Table 7. 

TABLE VI 
BANDWIDTH OF EACH EXPLANATORY VARIABLE  

explanatory variable (x's) Bandwidth 
�X�� average wind speed 0.85844717 
�X�� relative humidity 22.525256 
�X�� atmospheric pressure above sea level 9.8349967 
�X�� maximum temperature 14.395744 

 
TABLE VII 

LINK FUNCTIONS FOR DISTRIBUTIONS USED TO ESTIMATE THE GPLR MODELS WHEN THE THREE VARIABLES ARE NOT PARAMETRIC 

Negative Binomial Inverse 
Gaussian 

Gamma Poisson Gaussian Link functions  parametric 
variables 

0.0136  --- 0.0008 0.2633 0.7146 ���� �� 
529.4522  --- 753.4378 385.0658 349.094 (AIC) 
546.0514  --- 469.9756 402.0515 396.4331 (BIC) 
0.0146  --- 0.0008 0.2808 0.7603 ���� �
 
537.6034  --- 767.5061 385.0606 377.0251 (AIC) 
563.698  --- 793.5215 411.6314 403.8511 (BIC) 
 ---  ---  ---  --- 0.7667 ���� �� 
 ---  ---  ---  --- 378.4887 (AIC) 
 ---  ---  ---  --- 408.5923 (BIC) 
0.0146  --- 0.0009 0.2814 0.7668 ���� � 
540.5878  --- 767.6433 387.7615 378.5821 (AIC) 
569.9497  --- 796.9123 417.6254 408.6892 (BIC) 
       

From tables (2), (4) and (6), we find that the best model is 
when using the link function to distribute Gaussian, in other 
words the link function of type (Identity). The model has the 

lowest value of the Akaik's information criterion �AIC�  and 
the lowest value for the Schwarz's Bayesian information 
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criterion �BIC� and the highest proportion of the coefficient 
of determination �R�� Compared to the rest of the functions. 

C. Comparing Between Models  

After determining the correlation function for the 
Gaussian distribution from tables (2), (4) and (6), we will 

determine the best model of the models that we obtained 
from these tables using the Akaik's information criterion 
�AIC�  and the Schwarz's Bayesian information criterion 
�BIC�  and the coefficient of determination �R��  are 
presented in Table 8. 

 
TABLE VIII 

 VALUES OF EACH OF THE GPLR MODELS FOR EACH OF THE GENERALIZED PARTIAL LINEAR REGRESSION MODELS 

(BIC)  (AIC)  '�
) Non-Parametric component Parametric 
component NO. of Models 

396.4331 379.094 0.7146 ~��
���� �� 1 
403.8511 377.0251 0.7603 ~������� �
 2 
408.5023 378.4887 0.7667 ~����
�� �� 3 
408.6892 378.408 0.7668 ~����
��� � 4 
388.6623 375.352 0.7139 ~����� ���
 5 
397.5759 380.5229 0.7071 ~��
�� �� �� 6 
395.7379 380.0667 0.7031 ~��
��� �� � 7 
400.6324 376.5108 0.7521 ~����� �
 �� 8 
400.2648 374.9476 0.7623 ~������ �
 � 9 
403.6591 379.0103 0.7446 ~����
� �� � 10 
390.291 377.3921 0.7031 ~��� �� �
 �� 11 
388.9691 375.8568 0.7109 ~���� �� �
 � 12 
393.3289 379.7863 0.695 ~��
� �� �� � 13 
393.109 377.9291 0.7112 ~���� �
 �� � 14 
      

By comparing the three criteria AIC , BIC , R�, as in Table 
8, the researchers determined the best generalized partial 
linear regression model (GPLRM) as follows: 

1) First: the Akaik's information criterion: the 
researchers notice that the ninth model is the best because it 
had the lowest value for the Akaik's information criterion 

and its value was AIC = 374.9476 . And this represents 
parametric component �X��  relative humidity and variable 
�X��  maximum temperature. Either that variables �X�� 
average wind speed and �X��  atmospheric pressure above 
sea level. They represent the non-parametric component, as 
shown in Figure 1. 

 

 
 

Fig. 1 GPLRM when the parameter component represents the second and fourth variables. As for the non-parametric component it consists of the first and third 
variables. 
 

This model demonstrates from its parameter component 
that the variables achieve stability X�  and X� , so that the 
increase in one unit of the variable X�  (relative humidity) 
will reduce the amount of dust concentrations by (0.25417) 

which is a negative and significant effect, and that the 
increase in one unit of the variable X�  (Maximum 
temperature) will lead to an increase in the amount of 
polluted dust concentrations by (0.250611). Its unscientific 
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component shows the instability of the variables X� (average 
wind speed) and X� (atmospheric pressure above sea level) 
and that their behavior is not linear.  

The second came the fifth model, and the value of the 
AICA criterion reached AIC = 375.352 , whose component 

represents the variable X�  and the variable X� , while the 
variables X� and X� represent the non-parametric component 
as in figure 2. 

 

 
 

Fig.2 GPLRM when the parameter component represents the first and second variables. As for the non-parametric component, it consists of the third and fourth 
variables. 
 

We note from its parameter component that stability 
verifies the variables X� and X�, so that the increase by one 
unit of the variable X�  will lead to an increase in the 
concentrations of polluted dust by (3.47688), which is a very 
big effect. While for the variable X�, the increase by one unit 
will lead to a decrease in the amount of polluted dust 
concentrations to (0.197509), which negatively affects. As 
for its unscientific component, the variables in it X� and X� 
are non-linear and unstable. 

2) Second: the Schwarz's Bayesian information criterion: 
We note that the fifth model is the best because it had the 
lowest value for the Schwartz criterion and its value was 
BIC = 388.6623 , then came in second place the twelfth 
model and the value of the Schwartz criterion BIC =
388.9691 and its parameter component represents X�  and 

X� and X� and the variable X� represents the non-parametric 
component as in figure No. (3): 

 

 
 
Fig. 3 GPLRM when it represents the first component parametric variables and the second and fourth either component Allamwalima consists of the third 
variable 
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This model demonstrates from its parameter component 
that stability is achieved in the variables X�, X�and X� , so 
that the increase in one unit of the variable X� will lead to an 
increase in dust concentrations by (3.33259), which is a very 
big effect. But for the variable X�, increasing the intensity of 
one will lead to reducing the amount of concentrations of 
polluted dust by (0.215259) which is a negative effect. 
While increasing one unit of the X� variable will lead to an 
increase in the amount of polluted dust concentrations by 
(0.296354), which is a big effect, but its unscientific 

component shows the instability of the X�  variable and its 
behavior is not linear. 

3) Third: The determination coefficient criterion: We 
note that the fourth model is the best because it had the 
highest percentage of the determination coefficient and its 
value was R� = 0.7668 , whose parameter component 
consists of the variable X�, while the rest of the variables X�, 
X� and X� represent the non-parametric component as in 
figure. (4) 

 

 
 

Fig. 4  (GPLRM) shows when the parameter component represents the fourth variable. As for the non-parameter component, it consists of the first, second and 
third variables 
 

The model demonstrates from its parameter component 
that stability is achieved in variable X� and that increasing 
one unit of this variable will lead to an increase in the 
concentrations of polluted dust by (0.218145) which is a 
significant effect. Whereas its non-parametric component 
shows counting stability and non-linear behavior of the rest 
of the variables. The third model came in second place 
because it had the second highest proportion of the 
determination coefficient and reached R� = 0.7667 , whose 
parameter component represents the variable X� . The 
variables remained X� and X� and X� component represents. 
This model shows from its parameter component that 
stability is achieved in the variable X�  and that increasing 
one unit of this variable will lead to an increase in the 
concentrations of the amount of polluted dust by 
(0.0458546). To us, each model will be arranged according 
to its order of preference in relation to the standard and 
Table No. 9 clarifies this. 

TABLE IX 
 ARRANGEMENT OF MODELS IN THE THREE STANDARDS R2,AIC, BIC 

BIC  AIC  R2
 

Model 
13 9 2 m3 
14 8 1 m4 
1 2 8 m5 
9 1 3 m9 
2 3 10 m12 

 

From the comparison in table No. (9), we can determine 
that the (m5) model is the closest to the best model because 
it has the first�BIC�, second�AIC� and eighth�R��, where 
R� = 0.7139 . 

IV.  CONCLUSION 

The best model is the model in which the behavior of the 
variable �X��  relative humidity and the variable �X��  the 
maximum temperature is a stable linear behavior in the 
parametric component and the variables �X��  wind speed 
rate and �X��  atmospheric pressure above sea level, their 
behavior is non-linear and independent in the non-parametric 
part. The mathematical formula of the model (13) is: 

y� = g'−0.25417X� + 0.250611X� + m�X�, X��) 

From the model in the formula (13) we conclude that the 
variable �X��  relative humidity has a decreasing negative 
effect, i.e., increasing one unit of it will lead to a decrease in 
the number of dust storms by (0.25417) units. The variable is 
the maximum temperature �X��, then its effect is positive 
increasing and that increasing one unit from it will increase 
the number of dust storms by (0.250611) units. From the 
model in the formula (13) we conclude that the variable 
wind speed rate �X��  is unstable, non-linear and non-
parametric, as well as the variable � X�� air pressure above 
sea level is unstable, non-linear and non-parametric, and it 
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can be said that this case represents a negative problem that 
suffers from it Baghdad Governorate in particular, and Iraq 
in general. 

By studying the number of dust storms as a variable 
dependent on the explanatory variables, the average wind 
speed �X�� , relative humidity �X�� , atmospheric pressure 
above sea level � X�� and maximum temperature �X��, we 
conclude that the lack of green belts and afforestation causes 
an increase in dust storms. The criteria that have been 
applied are considered very important criteria in the 
statistical analysis to compare the preference of the models, 
which are the Kaikai standard, the Schwartz criterion, and 
the determination factor. 
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