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Abstract— In this paper, the failure rate function and the shape parameter for the kumaraswamy distribution and reliability function 
of a system with a number (m) of independent compounds associated with a system (serial, parallel) were estimated, by relying on 
observational data of the second type, knowing that the survival time of the compounds are independent. Based on the findings the 
graphical predictor of the failure rate and parameter - and the reliability function of the serial and parallel system is smaller than the 
Standard Bayesian estimator (MLE) in simulation and real data. Thus, a decreasing in AMPE with an increase in the sample size n 
and an increase in the size of the failure sample r as the physical prediction capabilities have a high efficiency. The using of the 
Bayesian prediction method to estimate the reliability of different production systems for other failure distributions such as the Burr 
family distributions and various other failure distributions. Based on the output he results are reasonably consistent with simulation 
and real data. The E-Bayesian method was used for estimating with three primary distribution functions for the above parameters 
and comparing them with the standard Bayesian method with a squared loss function and the maximum likelihood method where 
simulation experiments were employed to compare the estimation results and the results showed the advantage of the E-Bayesian 
method in estimating through comparison statistics (MAPE). 
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I. INTRODUCTION  

Life test experiments are interested in studying reliability 
data that are governed by some of the functions and 
probabilistic models, as there are many applications for life 
experience tests, industrial fields and other fields, and these 
processes have led to an increase in studies and researchers' 
interest in reliability, especially when the complexity of the 
systems is increasing and researchers are directed in their 
various studies To maintain devices and equipment and 
reduce the cost, and to demonstrate the efficiency of these 
devices in terms of work without breakdowns for the longest 
possible period and avoid sudden holidays This in turn leads 
to maintaining the optimum productivity of machines and 
equipment [1], [2]. 

As these studies and tests are conducted under many 
restrictions such as time and cost, failure times are usually 
not recorded for all elements that have been put under test. 
Such experiments lead to the emergence of data known as 
controlled data [3]. In many researches, different types of 

control data have been discussed, the most common The 
data of the control are of the first and second types, in this 
research the reliability function will be estimated based on 
the control data [4].  

In 1980, Kumaraswamy proposed a two-parameter 
distribution [5]. 

 f� = θ γ t�	
(1 − t�)(�	
)  (1) 

Whereas, γ and θ are parameters by form assuming that γ 
is known in this paper. As for the cumulative distribution 
function, it is as follows: 

 F�(t; θ) = 1 − (1 − t�)� (2) 

Then the reliability function and the failure rate 
distribution function will be sequentially as follows: 

 R(t) = (1 − t�)�   (3) 

 h(t) = ������


	��     (4) 
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II. MATERIALS AND METHOD 

A.  Systems Reliability 

Reliability of systems is defined as a group of compounds 
and subsystems that are connected with each other so that 
the system performs the required functions and that this 
system works as long as its vehicles operate depending on 
the nature of the vehicles and subsystems and two types of 
common interconnection systems can be distinguished as 
follows [6]: 

1) System Series: The serial connection of the system 
means that the system operates when all of its vehicles are 
operating, as the reliability of the system consisting of m of 
independent vehicles is as follows [7]: 

 R(t, s, m) = ∏ R�(t)�
��
  (5) 

From equation (5) it can be noted that: 

 �( , !, ") ≤ "$%&�
( ). �(( ) … . �*( )+ (6) 

That is, the reliability of the serial system is less than the 
reliability of any vehicle in the system, and if the life time 
for each of the vehicles is not distributed by Kumaraswamy 
with the two parameters θ� , i = 1,2, … , m γ�, i = 1,2, … , m  ، 
Note that the life time is independent for each vehicle and 
the probability density function is as follows [8], [9]: 

 .(/, 01 , 21) = 0121(1 −  34)(54	
) (7) 

Then the reliability of the distribution chain system is as 
follows 

 �1( ) = (− 34)54  (8) 

But if the components are identical, the system's 
reliability will be [5] : 

 

 R(t, s, m) = (1 − t�)�� (9) 

2)   Parallel System: The system is a factor if one of its 
vehicles remains active. At least, this type of connection is 
called parallel linking, where the system stops working when 
all its vehicles are stopped and the system reliability is as 
follows [10], [11]: 

 �( , 6, ") = 1 − [81 − �
( )981 − �(( )9  (10) 

 �( , 6, ") = 1 − ∏ 81 − �1( )9*
1�
  (11) 

Where it is observed from equation 11 the following: 

 �( , 6, ") = ":/&�
( ). �(( ). …  . �*( )+ (12) 
That is, the reliability of the parallel system is the greatest 

reliability of any of the system’s components [12]. The 
reliability of the Kumaraswamy parallel system is as follows 
[13], [14]: 

 �( , 6, ") = ∑ (1 −  34)54 *
1�
  (13) 

The Parallel system for Components Identical 
components is as follows: 

 �( , 6, ") = ∑ (−1)<	
 =*
< > (1 −  3)<5*

<�
  (14) 

The aim of this distribution is to estimate the shape 
parameter of Kumaraswamy distribution and the reliability, 
hazard rate functions with maximum likelihood, standard 
Bayesian, and E Bayesian Methods with three different 
kinds of priors under quadratic loss function. 

B.   Estimation Methods 

For estimating the unknown parameters of the 
Kumaraswamy distribution, the reliability function of serial 
and parallel systems, and the failure rate function. The 
estimation methods are Maximum Likelihood, Standard 
Bayesian and E-Bayes Methods [15], [16]. 

C.  Maximum Likelihood Method (MLE) 

(MLE) is one of the important methods in the process of 
estimation, its properties and the most important of these 
properties is the property invariance[17]. In failure 
monitoring experiments, n of experimental units are placed 
under observation in a life-model test or product longevity at 
zero time (where time is a random variable that cannot be 
determined) and by specifying r of observations where r < n 
where data consists of observations t1,t2,……tr that represent 
ages Test units This means that there is no information on 
survival units (n-r) except for those whose useful life is 
greater than tr  The test stops and the experiment ends when 
unit r fails [18]. Suppose that the first r of the failure times 
represent a sample that was previously determined with the 
size of n and placed under observation t is a random variable 
that distributes Kumaraswamy distribution with the 
parameters (θ, γ), but (MLE) is as follows :  

 

 ?80,  9 = ∏ .(@
1�
 0, 2,  1)[1 − A( @)]C	@   (15) 

 
Substituting equation (1) and equation (2) in equation (15) 

we obtain the following: 
 

 ?80,  9 = C!
(C	@)! ∏ 20@

1�
  1
3	
  (16) 

 

 ?80,  9 = C!
(C	@)! ∏ [E4

F��


	E4
F

@
1�
 ]G	5H (17) 

A parameter (MLE) is obtained for parameter θ, which is 
denoted by the symbol θm after taking the natural logarithm 
of equation (17) and its derivation with respect to θ. The 
estimator is as follows: 

0I*J = @
K Then, the estimator of the System Series 

reliability function estimator can be found in the MLE, 
which will symbolize  

To obtain the MLE estimator for the system parallel 
function, which is symbolized follows: 

 

 �I*J(L) = ∑ (−1)<	
 =*
< > *

<�
   (18) 

As for the MLE of the Function Rate Failure, which is 
denoted by a me, it is obtained by compensating equation 
(18) in equation (4) as follows: 
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 MN*J = 35NOPEF��


	EF  (19) 

D.  Standard Bayesian Method  

In this section we will address the standard BES method 
of estimation, which assumes that the prior information that 
is available about the parameter to be estimated can be 
formulated as a function called the prior probability density 
function and this function is only an expression about the 
prior knowledge of this parameter [19]. 

Based on a sample data type II Type Censored with a size 
r, it was determined from n of the units under the test 
experiment that are subject to the distribution kumarasumy 
with the two parameters 2, θ and assuming that the 
parameter 2 is known and assuming that the initial 
distribution of the parameter θ is the complete Gamma 
distribution [13]: 

 Q(0/:, S) = TU

⌈(W) 0W	
G	TX (20) 

Referring to the possibility function of observations and 
prior information and using Bayes theorem, the posterior 
distribution defined parameter θ as follows [20] : 

a~uniform(0,1)          , b~uniform(0, c)  

 b80,  9 = c85,E9d(5/W,T)
e c85,E9d(5/W,T)f5g

h
  (21) 

θ~Gamma(a, b)   

Then θ is to Bayesian estimator 

 �$!j80I9 = e ?80I, 09b80,  9k0 

X  (22) 

Using a quadratic loss function, which is defined as 
follows: 

 ?80I, 09 = (0I − 0)( (23) 

 Prediction of the posterior distribution      

E.   Bayesian Estimation Method  

In this section of the research, the parameter θ, as well as 
the system reliability on method will be estimated in a way 
of the predictive prediction of the estimation based on a 
square error function and three different primary 
distributions of the hyper parameters b, a, and according to 
the researcher Han [4] , That these parameters should be 
chosen to ensure that the initial distribution function of the 
parameter θ given in equation (22) is decreasing for the 
parameter θ and that the derivative of prior distribution with 
respect to parameter θ is: 

 
lm8θ,n,o9

lθ = op

⌈(n) θ
n	( e	oθr(a − 1) − bθs   (24) 

 Where 
lm8θ,n,o9

lθ < 0 It can be seen that the derivative (36) of 

the function (θ, a, b) decreases to θ when it is 0 < a < 1 and  
b > 0 Assuming that the parameters b, a are independent, 
they have the following joint prior distribution: 

 π(a, b) = π
(a)π((b) (25) 

Therefore, the E Bayesian estimator for the parameter θ 
can be calculated as follows: 

 θ
I

wx�� ∬(a, b)π�(a, b)dadb    i = 1,2,3   (26) 

Whereas (πi (a, b) represents the joint prior probability 
distributions of the hyper parameters so that 0 < a < 1 , 
0 < b < c where c is the upper limit of the parameter b and 
is chosen so that it does not move far from the value of the 
parameter a for the purpose of Maintaining the immunity of 
the Bayesian estimator .  

III.  RESULT AND DISCUSSION 

In this section, a simulation model will be created from 
five stages to estimate the parameter of the shape theta on 
the assumption of parameter gamma as well as estimating 
the reliability function of the system (serial, parallel) and the 
failure rate function for distribution Kumaraswamy and 
detailed stages are as follows: 

A. First Stage 

In this stage, samples under probation n and sizes of 
failure samples rare set as follows: 

We generate the values of the hyperparameters b, a and 
according to the formulas in equations (39) (40) (41). 
Assuming that c = 2   , γ = 2. Also generate a default value 
for the parameter, according to the Gamma distribution 

B. Second Stage 

Generating control samples of the second type for 
distribution Kumaraswamy (the inverse function method) 
according to the following function: 

  1 = A	
(|1) = [1 − (1 − A)
�
}]

�
F    (27) 

C. Third stage 

We estimate the parameter θ by the methods mentioned in 
the theoretical side, according to the formulas (10) (16) (26) 
(27) (28). 

D. Fourth Stage\ 

Estimating the reliability of the serial system by the 
methods mentioned in the theoretical side according to 
formulas (11) (19) (31) (33) (32) 

E. Fifth stage 

Estimating the reliability of the parallel system by the 
methods mentioned in the theoretical side according to 
formulas (12) (20) (35) (37) (36) 

F. Sixth stage 

Estimating the failure rate function by the mentioned 
methods in the theoretical side according to formulas (19) 
(31) (47) (49 ) ( 51). 

G. Seventh stage 

It is the stage in which the parameter value θ and its 
capabilities are compared according to the methods used in 
the research. 

 MAPE8θI9 = 

� ∑ ��	�N�

� ��
��
      (28) 

Each experiment was repeated 1000 times (N = 1000). 
The following tables represent simulation results 
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TABLE I 
SHOWS THE VALUES OF THE ESTIMATED PARAMETER Θ BY THE METHODS 

USED WHEN C = 2, Γ = 2 

�N��� �N��� �N��� �N� �N��� n  

0.8876 0.6585 0.6888 0.6237 0.6300 25 
0.7363 0.7379 0.7361 0.7552 0.7077 
0.6989 0.6999  0.6990 0.6989  0.6935 40 

0.7659 0.7559 0.7567 0.7555 0.7535 
0.7530 0.7532 0.7533 0.7649 0.7836 70 
0.7990 0.7980 0.7983 0.7988 0.7976 
0.9368 0.9389 0.9366 0.8975 0.8987 100 
0.9479 0.9470 0.9476 0.9381 0.9292 

 
TABLE II 

SHOWS (MAPE) FOR THE ESTIMATED PARAMETER Θ BY THE METHODS USED 

WHEN C = 2, Γ = 2 

�N��� �N��� �N��� �N��� n 

0.4839 0.4840 0.4848  0.5060 25 
0.4955  0.4960 0.4961 0.49077 
0.4820 0.4825 0.4830 0.5044 40 

0.4325 0.4349 0.4356 0.4494 
0.4519 0.4529 0.4536 0.4690 70 
0.4240 0.4249 0.4253 0.4276 
0.4209 0.4209 0.4212 0.4587 100 
0.4066 0.4070 0.4076 0.4162 

 

TABLE III 
SHOWS THE CAPABILITIES OF THE SERIAL SYSTEM RELIABILITY FUNCTION 

BY THE METHODS USED WHEN C = 2, Γ = 2 

�N ���� �N ���� �N ���� �N �� �N ��(�) n 

0.1803  0.1853  0.1891 0.1951  0.1993 25 
0.1880  0.1904  0.1937  0.2008 0.2013 
0.1885 0.1902 0.1935 0.19526  0.2037 40 
0.3323  0.3329  0.3331 0.33454  0.3365 
0.1995 0.2023 0.2094  0.21176 0.2922  70 
0.2155  0.2142  0.2152 0.2362  0.3079  
0.1992 0.2125 0.2149 0.23655 0.3026 100  
0.2197 0.2226 0.2293 0.24552 0.3835 

 

TABLE IV 
SHOWS THE CAPABILITIES OF THE PARALLEL SYSTEM RELIABILITY 

FUNCTION BY THE METHODS USED WHEN C = 2, Γ = 2 

RNwx�� RNwx�� RNwx�� RNx� r n 

0.4186 0.4205 0.4222 0.4987  15 25 
0.4106 0.4118 0.4125 0.4767 20 
0.4180 0.4201 0.4218 0.4980 25  40 
0.4100 0.4109 0.4121 0.4901  35  
0.4177 0.4202 0.4211 0.4955 45 70 
0.4145 0.4149 0.4153 0.4562 55 
0.4122 0.4129 0.4134 0.4854 75 100 
0.4079 0.4078 0.4076 0.4381 90 

 
 
 
 
 
 

TABLE V 

 SHOWS THE CAPABILITIES OF THE FAILURE RATE FUNCTION BY THE 

METHODS USED 

hIwx( hIwx� hIwx
 hIx hI��� n 

0.7244 0.7243 0.7250 0.7261  0.7366 25 
0.6349 0.6333 0.6351 0.7003 0.7034  
0.7240 0.7238 0.7243 0.7258 0.7363 40 

0.7169 0.7150 0.7197 0.7251 0.7228 
0. 7139 0. 7132 0. 7143 0.7156  0.7186 70 
0.7019 0.7010 0.7023 0.7052 0.7066 
0.6657  0.6650 0.6666 0.6775 0.6887 100 
0.6770  0.6763 0.6776 0.6781 0.6792 

A.  Experiment procedure  

In this aspect of the research, the application of all the 
estimation methods used in the experimental side has been 
carried out based on real data collected from the Central 
Organization for Standardization and Quality Control / 
Textile Industries Division, as these data that have been 
approved in this aspect represent towels and are from textile 
products . 

1)  Collecting and testing data 

Here data was collected directly by taking a type of fabric, 
which is represented by towels, and examining it to find out 
the cut-off time for each unit measured per second using the 
force of fabric cutting device, as the test was a measure of 
the length of the strip of the towel, which is 20cm and a 
width of 5cm where the number of views selected was 25 
views That is, the size of the sample (n = 25) recorded in the 
table below: 

 
TABLE VI 

 SHOWS THE REAL DATA OF THE TOWELS, WHICH REPRESENTS THE CUT-
OFF TIME FOR EACH UNIT MEASURED PER SECOND 

S. REAL DATA  S. REAL DATA  
1 12.43 14 12.48 
2 12.39 15 13.13 
3 13.52 16 12.91 
4 13.62 17 13.32 
5 12.73 18 12.95 
6 13.91 19 13.17 
7 13.21 20 12.81 
8 13.29 21 12.65 
9 13.83 22 14.15 
10 14.12 23 14.21 
11 14.31 24 13.81 
12 13.43 25 13.66 
13 12.18   

 
The data collected above are observational data of the 

second type and for the purpose of knowing whether the 
withdrawn data follow the kumaraswamy distribution 
according to the following hypothesis: The data are 
distributed kumaraswamy distribution: H0 v.s. Data not 
distributed kumaraswamy distribution: H1. Good conformity 
test Smirnov-Kolmogorov (S-K ) for real data was 
performed using fit easy program and table VII below.  
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TABLE VII 
SHOWS THE RESULTS OF THE KUMARASWAMY DISTRIBUTION  

OF THE REAL DATA  
Kumaraswamy Distribution  [#31] 

Smirnov-Kolmogorov test 
Sample 
Size  
Statistic  
P-Value  
Rank  

25 
0.1306 
0.73944 
46 

α 0.2 0.1 0.05 0.02 0.01 
Critical 
Value  

0.2079 0.23768 0.26404 0.29516 0.31657 

Reject ?  No  No No No No 
 

Through the table above, we find that the values of the 
test-strength index (value-P) are greater than the levels of 
significance, as well as the value of the statistic in favor of 
the null hypothesis, and this indicates that the null 
hypothesis that the data is distributed a kumaraswamy 
distribution, and therefore the cut-off time data for the 
towels is distributed kumaraswamy distribution. 

2)  Data Analysis 

After knowing the real data distribution represented by 
the kumaraswamy distribution, the estimation methods 
represented by the (MLE) method and the Standard 
Bayesian method were used based on a quadratic loss 
function and the Bayesian prediction method with three 
distributive functions for the meta-parameters for estimating 
the shape parameter for the distribution and the reliability 
function in the serial and parallel systems and the failure rate 
function, as shown in the table (8) Below, the Bayesian 
predictive method with its three functions is preferable to the 
rest of the methods, and this is equivalent to the 
experimental aspect. 

 
TABLE VIII 

SHOWS THE CAPABILITIES OF THE REAL DATA  

Estimation 
methods 
 

 
Functions  
and 
parameter 

Standard 
Bayesian 
method 

Bayesian 
prediction 
method for 
the primary 
function 1 

Bayesian 
prediction 
method for 
the primary 
function 2 

Bayesian 
prediction 
method for 
the primary 
distribution 
function 3 

Shape 
parameter 

θIwx( θIwx
 θIx θI��� 
0.1742 0.1749 0.1755 0.1768 

Functionality 
of the serial 
system 

RNwx�� RNwx�� RNx� RN��(�) 
0.1722 0.1734 0.1777 0.1785 

Functionality 
of parallel 
system 

RNwx�� RNwx�� RNx� RN��(�) 

0.5051 0.5055 0.5074 0.5093 

Failure rate 
function 

hIwx� hIwx
 hIx hI��� 
0.5519  0.5521 0.5560 0.5613 

IV.  CONCLUSION 

In general, we find that the graphical predictor of the 
failure rate and parameter - and the reliability function of the 
serial and parallel system is smaller than the Standard 
Bayesian estimator (MLE) in simulation and real data. We 

notice from all tables that the E-Bayesian Estimation for a 
parameter in its three states tends to be more efficient than 
the Bayesian estimator & (MLE) for them because it has a 
smaller AMPE 

We note a decrease in AMPE with an increase in the 
sample size n and an increase in the size of the failure 
sample r as the physical prediction capabilities have a high 
efficiency. We note that the results are reasonably consistent 
with simulation and real data, We recommend using the 
Bayesian prediction method to estimate the reliability of the 
serial and parallel system in applied studies for their 
efficiency in estimating. We recommend using the Bayesian 
prediction method to estimate the reliability of different 
production systems for other failure distributions such as the 
Burr family distributions and various other failure 
distributions. 

REEFERENCES 
[1] Dey, S., Mazucheli, J., & Anis, M. Z. (2017). Estimation of 

reliability of multicomponent stress–strength for a Kumaraswamy 
distribution. Communications in Statistics-Theory and Methods, 
46(4), 1560-1572.  

[2] Paranaíba, P. F., Ortega, E. M., Cordeiro, G. M., & Pascoa, M. A. D. 
(2013). The Kumaraswamy Burr XII distribution: theory and 
practice. Journal of Statistical Computation and Simulation, 83(11), 
2117-2143. 

[3] Kohansal, A. (2019). On estimation of reliability in a 
multicomponent stress-strength model for a Kumaraswamy 
distribution based on progressively censored sample. Statistical 
Papers, 60(6), 2185-2224.  

[4] Okasha, H. M. (2012). E-Bayesian estimation of system reliability 
with Weibull distribution of components based on type-2 censoring. 
Journal of Advanced Research in Scientific Computing, 4(4), 34-45.  

[5] Cordeiro, G. M., Pescim, R. R., & Ortega, E. M. (2012). The 
Kumaraswamy generalized half-normal distribution for skewed 
positive data. Journal of Data Science, 10(2), 195-224.  

[6] Cordeiro, G. M., Nadarajah, S., & Ortega, E. M. (2012). The 
Kumaraswamy Gumbel distribution. Statistical Methods & 
Applications, 21(2), 139-168.  

[7] Reese, C. S., Wilson, A. G., Guo, J., Hamada, M. S., & Johnson, V. 
E. (2011). A Bayesian model for integrating multiple sources of 
lifetime information in system-reliability assessments. Journal of 
quality technology, 43(2), 127-141.  

[8] Piriaei, H., Yari, G., & Farnoosh, R. (2020). On E-Bayesian 
estimations for the cumulative hazard rate and mean residual life 
under generalized inverted exponential distribution and type-II 
censoring. Journal of Applied Statistics, 47(5), 865-889.  

[9] Abdel-Hamid, A. H., & Hashem, A. F. (2017). A new lifetime 
distribution for a series-parallel system: properties, applications and 
estimations under progressive type-II censoring. Journal of Statistical 
Computation and Simulation, 87(5), 993-1024.  

[10] Sharaf, H. K., Ishak, M. R., Sapuan, S. M., Yidris, N., & Fattahi, A. 
(2020). Experimental and numerical investigation of the mechanical 
behavior of full-scale wooden cross arm in the transmission towers in 
terms of load-deflection test. Journal of Materials Research and 
Technology, 9(4), 7937-7946.  

[11] Sharaf, H. K., Ishak, M. R., Sapuan, S. M., & Yidris, N. (2020). 
Conceptual design of the cross-arm for the application in the 
transmission towers by using TRIZ–morphological chart–ANP 
methods. Journal of Materials Research and Technology, 9(4), 9182-
9188.  

[12] Bland, J. M., & Altman, D. G. (2003). Applying the right statistics: 
analyses of measurement studies. Ultrasound in Obstetrics and 
Gynecology: The Official Journal of the International Society of 
Ultrasound in Obstetrics and Gynecology, 22(1), 85-93.  

[13] Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The 
design of simulation studies in medical statistics. Statistics in 
medicine, 25(24), 4279-4292.  

[14] Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., 
Hingorani, A. D., Wallace, C., & Plagnol, V. (2014). Bayesian test 
for colocalisation between pairs of genetic association studies using 
summary statistics. PLoS Genet, 10(5), e1004383.  

1481



 

[15] Suchting, R., Beard, C. L., Schmitz, J. M., Soder, H. E., Yoon, J. H., 
Hasan, K. M., ... & Lane, S. D. (2020). A meta‐analysis of tract‐
based spatial statistics studies examining white matter integrity in 
cocaine use disorder. Addiction Biology, e12902.  

[16] Vishwakarma, P. K., & Dutta, P. (2020). H i column density statistics 
of the cold neutral medium from absorption studies. Monthly Notices 
of the Royal Astronomical Society, 491(2), 2360-2365.  

[17] Chen, T. H., Chatterjee, N., Landi, M. T., & Shi, J. (2020). A 
penalized regression framework for building polygenic risk models 
based on summary statistics from genome-wide association studies 
and incorporating external information. Journal of the American 
Statistical Association, (just-accepted), 1-19.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[18] Speed, D., & Balding, D. J. (2019). SumHer better estimates the SNP 
heritability of complex traits from summary statistics. Nature 
genetics, 51(2), 277-284.  

[19] Grant, J. B., & Grace, T. (2019). Use of Diverse Case Studies in an 
Undergraduate Research Methods and Statistics Course. Psychology 
Learning & Teaching, 18(2), 197-211.  

[20] Yasukuni, R., Gillibert, R., Triba, M. N., Grinyte, R., Pavlov, V., & 
de la Chapelle, M. L. (2019). Quantitative analysis of SERS spectra 
of MnSOD over fluctuated aptamer signals using multivariate 
statistics. Nanophotonics, 8(9), 1477-1483.  

1482




