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Abstract— DNA markers can detect DNA sequence variations in the genome, and they are useful for genetic studies, DNA 

fingerprinting, and genotype-based selection in breeding programs. Rice, as one of the model plants for genetic and genomic studies, 

has abundant DNA markers stored in various online databases. Selecting markers in rice is not limited by marker availability but 

rather by their polymorphism in the target population. We developed a computational method to screen millions of single nucleotide 

polymorphism (SNP) markers listed in IRRI 3000 rice genome database in order to find a subset of markers that are polymorphic in 

an F2 mapping population created from a cross between a parental line with a known genome sequence and a local Indonesian variety 

with no genome sequence data. The parental lines were genotyped using an affordable medium-density SNP array. The genotype data 

was cross-referenced with the rice genome database to perform phylogenetic analysis and identify accessions clusters with the highest 

genetic similarities to each parental line. The cluster data was then used to identify monomorphic SNP candidates within the cluster 

but exhibit consistent polymorphism between the two clusters. Using this method, we obtained a SNP marker set for a segment in rice 

chromosome 8 with 76.19% polymorphism rate, which is much higher than the expected 1.06% polymorphism rate if the SNP markers 

were chosen randomly. The improved polymorphism rate was also observed when the method was applied to other random chromosome 

segments and randomly chosen parental candidates. 
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I. INTRODUCTION

Genetic markers are essential tools in genetic studies since 

they can assess the variable regions in the genome. They have 

been utilized to find the location of DNA sequences that 

contribute to superior traits through linkage mapping [1] and 

association mapping [2], trace crop evolution [3] and 

migration [4], and develop fingerprinting tools for varietal 

identification [5]. The underlying technology to visualize 

DNA variation has evolved from simple morphological 

markers, isozymes, restriction fragment length 
polymorphisms to polymerase chain reaction (PCR) based 

markers such as randomly amplified polymorphic DNA and 

simple sequence repeats [6].  

As genetic studies started to examine finer details of the 

genome structure, the limited availability of usable markers in 

various genomic regions became an issue [7]. The emergence 

of whole-genome sequencing technology has helped to solve 

this problem, as virtually all DNA sequences in the genome 

of individuals of interest can now be read and compared. 

Consequently, most polymorphic loci in the genome can be 
detected with a high degree of precision. Nevertheless, even 

though the cost of whole-genome sequencing continues to 

decline, the technology is not always economically viable for 

regular uses in genetic studies and breeding programs [8]. 

Thus, cheaper genetic markers that are sufficiently ubiquitous 

in the genome are still indispensable for genetic studies. 

Single nucleotide polymorphism (SNP) markers fulfill this 

need, as they are prevalent in the genome and can be assayed 

economically using various methods [9]. SNP genotyping 

techniques for simultaneous analysis of a large number of 

SNPs exist, and simpler methods that utilize PCR 

amplification followed by visualization in agarose gels are 
also available. The total cost and SNP genotyping methods 

can thus be optimized according to the available budget and 

the number of SNPs to be genotyped. 

The declining cost of whole-genome sequencing has 

enabled many institutions and research groups to sequence the 

genomes of various crops and share the resulting DNA 
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variation data in publicly accessible databases, which can be 

used as a rich source of DNA markers. One of those databases 

is the IRRI SNP-Seek database [10], which was constructed 

from the whole genome sequence data of 3243 rice accessions 

in IRRI collection [11]. Various groups sequenced an 

additional 3982 rice accessions, and the SNPs were also made 

available to the public [12]. Together, these resources can 

help rice researchers obtain DNA markers for most regions in 

the rice genome. 

Nevertheless, those abundant DNA markers are unusable if 

they are monomorphic in the intended sample population. To 
obtain polymorphic markers, marker candidates are usually 

screened first in a subset of the target population to eliminate 

monomorphic markers. This screening stage often requires 

considerable investments in terms of time, labor, and reagents. 

Thus, there is a need for inexpensive techniques that facilitate 

quick identification of polymorphic markers for the target 

samples in research and breeding programs that utilize DNA 

markers. Here we report a method that utilizes the SNP data 

generated by the 3000-rice genome project to design SNP 

markers for a target region with 76% polymorphism rate in an 

F2 population. The population was developed to map the gene 
or quantitative trait loci (QTL) that are responsible for 

resistance to brown planthopper, by crossing an elite variety 

and a local variety that has not been sequenced. A major QTL 

was successfully mapped using 7K Infinium SNP genotyping 

[13] to a 1.833 Mb chromosomal segment in rice chromosome 

8, which contains 236 genes [14]. 

A fine-mapping study using more markers in the target 

region to identify the causal gene of the QTL was planned, 

and we devised a computational screening method to improve 

the polymorphism rate of the marker selection step. We used 

the genotypic data of the parental lines from the 7K SNP data 
to deduce their phylogenetic relationship with the 3000 rice 

accessions sequenced by IRRI. Accessions with the highest 

genetic similarity to one of the parents were grouped together 

to be compared to the other group comprising accessions most 

similar to the other parent. We demonstrated that by selecting 

markers in the IRRI SNP database that exhibited consistent 

polymorphism between groups but are monomorphic among 

accessions within the same group, we could improve the 

polymorphism rate of selected markers significantly higher 

level compared to random marker selections. 

II. MATERIALS AND METHODS 

A. Plant Materials 

This study's plant materials are a segregating F2 population 

from a cross between TN1 and Untup Rajab, a local 

Indonesian rice variety. Leaf samples were taken from both 

parents and individual F2 plants for DNA extraction and 

marker analysis. DNA extraction was performed according to 

the methods of Dellaporta et al. [15]. Initial SNP genotyping 

of both parents was performed using rice SNP 7K Infinium 

genotyping assay [16] at IRRI service laboratory using their 
standard operating procedures. 

B. Extraction of 3000 Rice Sequence Data for Phylogenetic 

Analysis 

The 7K SNP coordinate data was extracted from coordinate 

data supplied by IRRI. To reduce computational burden in the 

downstream analyses, the coordinates were further filtered to 

include only those located in chromosome 8, since the QTL 

interval of interest is located in that chromosome. Those 

coordinates were then used to extract the SNPs of interest 

from the 3000 rice whole-genome SNP data, which were 

downloaded from IRRI [17] and contained 29 million SNPs 

in PLINK format. SNP extraction was carried out using 

PLINK software [18], using the --extract command. 

C. Phylogenetic Analysis 

The extracted SNP data from the 3000 sequenced 

accessions and the two parental lines were converted to 

DarWin [19] input format. Using DarWin, phylogenetic 

analysis was carried out by first calculating dissimilarities 

from allelic data using the following equation: 
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Where dij : dissimilarity between units i and j, L : number 

of loci, π : ploidy, and ml : number of matching alleles for 

locus l. The resulting dissimilarity vector was then used to 
construct a phylogenetic tree using weighted neighbor-joining 

procedure. The tree was subsequently exported in newick 

format, to be drawn and annotated using iToL [20]. 

D. Extracting and Selecting Markers from Closely Related 
Rice Accessions 

By visualizing the resulting phylogenetic tree, six 

accessions closest to TN1 and six accessions closest to Untup 

Rajab were identified. All of their DNA variants in the region 
of interest in chromosome 8 were extracted from the original 

29 million SNP data using PLINK --chr command along with 

--from-kb and --to-kb commands. After filtering for variants 

located in the region of interest (Rice Chromosome 8, base 

24,205,833 to 26,038,950), the SNP data was then loaded to 

Microsoft Excel. By grouping the accessions into two clusters, 

i.e., the Untup Rajab group and TN-1 group, variants that 

were monomorphic within the group but polymorphic 

between the group were identified using “=IF” function in 

Microsoft Excel. Each selected SNP's coordinates were then 

recorded and intersected with genic coordinate data to identify 

SNPs located in coding regions using Bedtools’ intersectBed 
command [21]. 

E. Marker Design and Assay 

The selected SNP coordinates were used to extract the 

DNA sequence data from the reference genome. A total of 100 

bp of sequences upstream and downstream of the target SNP 

were extracted using fastaFromBed command in Bedtools, 

and submitted for KASP genotyping assay [22] to analyze the 

genotypes of the SNPs in the segregating F2 population. Raw 
genotype data was viewed using SNPviewer (v. 2, 

KBioscience), while the graphical representation of the SNP 

alleles was visualized using GGT 2.0 [23]. 

F. Performance Verification 

Applicability of the SNP selection method was tested on a 

random chromosome segment chosen using a random number 

selector [24] and the same phylogenetic tree generated in this 

study. For this test, IRRI’s TN1 and Sossoka Oule accessions 

were chosen to substitute our TN1 and Untup Rajab since they 
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belong to the same cluster and their whole genome sequences 

were available to check the polymorphism of selected SNPs. 

The number of related accessions per cluster was varied from 

five to two, to observe the effect of cluster size on SNP 

polymorphism prediction accuracy. False positives were 

defined as SNPs predicted to be polymorphic but found to be 

monomorphic in TN1 and Sossoka Oule, while false 

negatives were predicted to be SNPs monomorphic but are 

polymorphic in the two accessions. The test was repeated on 

two randomly selected accessions (Ampipit and ITA 117), but 

this time the related accessions clusters were chosen based on 
IRRI’s phylogenetic tree [17] to see the effects of higher 

quality phylogenetic tree on prediction accuracy. The targeted 

chromosome segment was again chosen using a random 

number selector. 

III. RESULTS AND DISCUSSIONS 

A. Phylogenetic Analysis 

The IRRI 7k SNP chip contained 7098 markers, 1046 of 

which were polymorphic between TN-1 and Untup Rajab. 
Among the 7098 SNPs, 545 were located in chromosome 8, 

where the target QTL interval was located [14]. There were 

511 SNPs in chromosome 8 intersected with whole-genome 

SNP data extracted from the IRRI 3000 genome project.  

Based on those 511 markers from chromosome 8, a 

neighbor-joining phylogenetic tree was constructed (Fig. 1). 

According to the tree, the accessions closest to TN-1 belong 

to ind1A or indx subpopulation and dominated by accessions 

from the Indian subcontinent. The tree also correctly placed 

the TN-1 genotyped in this study close to the TN-1 that IRRI 

sequenced. Slight differences found between the two TN-1 

accessions could result from variant-calling errors [25], 

sequencing errors [26], or newly-arising mutations [27]. 

Untup Rajab is clustered with accessions from ind2 

subpopulation, although one of the closely related accessions 

belongs to indx subpopulation. All six genetically similar 

accessions to Untup Rajab originated from Africa, which is 
surprising since Untup Rajab is classified as a local landrace 

in Indonesia. 

Genetic dissimilarities between Untup Rajab and its most 

similar accessions were higher than the dissimilarities 

observed in TN-1 cluster (Table 1). TN-1 was one of the 

earliest semi-dwarf elite varieties that later brought about the 

green revolution. It was popular in India in the 1960’s and it 

was commonly used as one of the parents for developing new 

varieties [28]. This could explain the relatively low 

dissimilarity observed in the TN-1 cluster. On the other hand, 

Untup Rajab is an Indonesian landrace. Thus any similarities 
with other rice accessions from different continents in the 

cluster could be due to a common ancestor that was 

exchanged or introduced a long time ago, after which each 

accession had the chance to mutate and evolve when adapting 

to a new location [29]. 

 

 
 

Fig. 1  Location of the two parental lines relative to the 3000 rice accessions sequenced by IRRI in a phylogenetic tree constructed from 511 SNP data in 

chromosome 8. The colored bars indicate each accession’s subpopulation membership specified by IRRI. The twelve accessions that were most similar to either 

parent were shown in the two zoomed in cladograms in the right, along with their subpopulation membership. 
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TABLE I 

IRRI ACCESSIONS WITH THE HIGHEST GENETIC SIMILARITY TO THE PARENTAL LINES 

Accession Name Accession Code Cluster Subpopulation Origin Genetic Dissimilarity 

TN-1 CX162 TN-1 ind1A  0.0142 
EX MARABA GURUKU IRIS 313-10047 TN-1 ind1A Nigeria 0.0132 
W 1014-162 IRIS 313-11244 TN-1 indx India 0.0142 

MR 136-1 IRIS 313-11433 TN-1 ind1A India 0.0143 
KABERI IRIS 313-11722 TN-1 indx Bangladesh 0.0141 
RPA 5929 (K 45) IRIS 313-9604 TN-1 indx India 0.0142 
SOSSOKA OULE IRIS 313-10573 Untup Rajab ind2 Mali 0.0478 
MOND BA IRIS 313-10723 Untup Rajab ind2 Senegal 0.0628 
FOFFI IRIS 313-11758 Untup Rajab ind2 Cote d'Ivoire 0.0599 
TANDAKAY FINGO IRIS 313-11787 Untup Rajab ind2 Gambia 0.0702 
POTOQOIN IRIS 313-11988 Untup Rajab indx Sierra Leone 0.0569 

MARAGBE IRIS 313-8391 Untup Rajab ind2 Burkina Faso 0.0546 

 

B. Marker Selection 

The allelic dissimilarity between TN-1 and Untup Rajab 

was 0.117. Among the 1022 alleles used to create the 

phylogenetic tree, 106 were polymorphic between TN-1 and 

Untup Rajab, while 800 were monomorphic, and the rest had 

missing data. Therefore, based on these observed alleles, the 

proportion of polymorphic alleles in chromosome 8 was 

11.7%. Assuming that the alleles were representative samples 

for the whole chromosome 8, selecting random 42 SNPs 

across the chromosome on average will only result in 5 

polymorphic SNPs, which is inadequate for fine-mapping 
studies. 

To obtain SNP marker candidates, we downloaded and 

extracted all SNP data that are located within the target QTL 

interval from the 12 accessions listed in Table 1. The targeted 

interval lies between base 24,205,833 to 26,038,950 in rice 

chromosome 8. Among the 146,814 biallelic SNPs within the 

interval, 1,670 were identified as consistently polymorphic 

between TN-1 cluster and Untup Rajab cluster. Consistent 

polymorphism is defined as monomorphism within cluster 

members but polymorphic between different clusters. This 

chromosome segment's observed polymorphism rate is only 
1.06% , much lower than the 11.7% predicted from the 7K 

SNP chip results. Thus, picking 42 random SNPs across the 

interval is not likely to produce even a single polymorphic 

SNP in the marker set. 

The lower polymorphism rate could be due to the fact that 

the markers in the 7K rice SNP chip were chosen based on 

their likelihood to be polymorphic among different rice 

subpopulations [30]. Hence, they are not representative 

samples of the typical SNPs found in most intervals within the 

rice genome. It is also possible that our target interval contains 

more conserved regions among indica rice, which typically 

have a lower-than-average polymorphism rate. However, 
such an assertion needs to be verified by examining the 

polymorphism rate across the genome. 

The 1,670 consistently polymorphic SNP candidates were 

then annotated to identify SNPs that intersect with genic 

regions. They are also binned according to their position to 

ensure even and equidistant representation within the QTL 

interval. A final set of 48 SNPs were chosen to represent each 

bin at roughly similar distance from other SNPs, and 

whenever possible genic SNPs were prioritized in each bin, 

since genic SNPs are more likely to affect phenotypes and 

likely to be conserved within a cluster (Table 2). 

C. KASP Assay 

SNP genotyping for the new set of SNPs was performed 

based on Competitive Allele-Specific PCR or KASP [31], 

since it had been verified as a reliable and cost-effective 

method for genotyping a smaller number of SNPs in small 

population size [32]. Among the 48 SNPs submitted to the 

genotyping service provider, 42 SNPs were suitable for KASP 

primer design and genotyping assays. Genotyping assays of 

those 42 SNPs revealed that 32 SNPs were polymorphic in the 
sample F2 population, which consisted of 192 individuals 

from a cross between Untup Rajab and TN-1. Among the ten 

monomorphic SNPs, seven SNPs only produced the alleles 

from Untup Rajab, while the remaining three SNPs only had 

TN-1 alleles. The monomorphic SNPs also overwhelmingly 

favor the G/C alleles than A/T alleles, with a ratio of 4:1 

(Table 2).  

The SNP assay had a high success rate, with only 2% of 

uncalled genotypes recorded. Some of those uncalled 

genotypes can be called with high confidence upon consulting 

the raw signal data (Fig 2A). Only one plant sample had an 
unusually high proportion uncalled genotype, as 19 of the 42 

SNPs could not be genotyped in this sample, while most had 

better SNP call rate with 85 samples reported 100% SNP calls 

and 74 samples only had one missing SNP call. Each SNP 

marker on average had four uncalled genotypes when it was 

used to assay the 192 samples. Two of the monomorphic SNP 

markers (Chr8_24848984 and Chr8_25915452) had 

unusually high uncalled genotypes, which were observed in 

around 25% of the assayed samples. This indicates that those 

locus may not be suitable for primer design and KASP assay. 

One possible reason is that two of the primers used in KASP 

assays must have 3’ ends that contain the SNP of interest [31], 
hence there are not enough flexibilities in choosing the 

flanking DNA segment that can be used to design the primers. 

If the SNP sequences contain some features that inhibit PCR, 

such as unusual GC content and hairpins [33], it will be 

difficult to design an effective primer for such locus. It is also 

possible that primers designed from such locus may be more 

effective for one allele and less so for the other allele [34], 

creating an illusion of monomorphism or skewed distribution 

of alleles. 
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TABLE II 

PROPERTIES OF SELECTED SNP IN THE TARGET INTERVAL 

Chromosome SNP Position Polymorphism Notes 

Chr8 24255130 (A/G) Polymorphic 

Chr8 24286188 (C/T) Polymorphic 

Chr8 24300914 (C/T) Polymorphic 

Chr8 24324859 (A/G) Excluded 

Chr8 24367765 (A/G) Polymorphic 

Chr8 24417814 (A/G) Polymorphic 

Chr8 24446073 (A/G) Polymorphic 

Chr8 24494660 (A/T) Polymorphic 

Chr8 24525162 (A/G) Excluded 

Chr8 24580101 (G/T) Polymorphic 

Chr8 24626816 (A/G) Polymorphic 

Chr8 24640146 (A/G) Polymorphic 

Chr8 24741960 (A/C) Monomorphic 

Chr8 24769690 (A/G) Polymorphic 

Chr8 24848984 (G/T) Monomorphic 

Chr8 24887322 (A/T) Polymorphic 

Chr8 24937118 (A/G) Polymorphic 

Chr8 24967388 (A/G) Polymorphic 

Chr8 25000189 (A/G) Polymorphic 

Chr8 25048975 (C/T) Excluded 

Chr8 25071564 (C/T) Monomorphic 

Chr8 25116271 (C/T) Polymorphic 

Chr8 25125023 (C/T) Monomorphic 

Chr8 25163997 (C/T) Polymorphic 

Chr8 25208980 (A/G) Polymorphic 

Chr8 25230553 (C/T) Monomorphic 

Chr8 25271327 (C/G) Polymorphic 

Chr8 25287787 (C/T) Monomorphic 

Chr8 25338637 (C/T) Monomorphic 

Chr8 25401336 (A/G) Polymorphic 

Chr8 25408352 (A/G) Polymorphic 

Chr8 25440564 (A/G) Polymorphic 

Chr8 25482037 (G/T) Polymorphic 

Chr8 25505323 (G/T) Excluded 

Chr8 25539507 (C/T) Excluded 

Chr8 25591272 (A/G) Polymorphic 

Chr8 25610820 (A/C) Excluded 

Chr8 25663664 (A/G) Polymorphic 

Chr8 25677006 (A/T) Polymorphic 

Chr8 25713549 (C/T) Polymorphic 

Chr8 25735605 (A/G) Polymorphic 

Chr8 25762477 (A/T) Polymorphic 

Chr8 25835547 (G/T) Monomorphic 

Chr8 25915452 (A/G) Monomorphic 

Chr8 25932039 (C/T) Polymorphic 

Chr8 25972248 (A/T) Polymorphic 

Chr8 25986057 (C/T) Monomorphic 

Chr8 26035154 (C/T) Polymorphic 

To test that hypothesis, we examined the sequences 

flanking the target SNPs using the PCR Primer Stats utility in 

the Sequence Manipulation Suite website [35]. The result 

indicated that one of the unusual monomorphic primers had 

low GC content and the alternative site had a high melting 

temperature. However, such problems can also be found in 

some of the polymorphic markers, which shows that they are 

not always critical in KASP assays. The other unusual 

monomorphic primer passed all the tests, which means that 

there should be no problem should that locus is used to design 

a PCR primer. Thus, factors other than the common ones 
known to hinder PCR were responsible for the unusually high 

fraction of uncalled SNPs in the two monomorphic markers. 

Except for the monomorphic SNPs, most SNPs did not 

significantly deviate from the 1:2:1 Mendelian ratio for 

segregation in an F2 population when tested using Chi-

Squared Tests. Only one polymorphic SNP marker 

(Chr8_24367765) significantly deviated from the 1:2:1 ratio, 

and the observed ratio between alleles of Untup Rajab, 

heterozygotes, and TN-1 was 45:136:11 respectively. Such 

ratio indicates that some of the homozygotic TN-1 alleles 

were scored as heterozygotes. Inspection of the original 
fluorescent data revealed that the heterozygote spots formed 

a continuous distribution with the TN-1 spots, making even 

manual allelic determination difficult (Fig. 2B). Whether this 

is due mainly to suboptimal primer design or other factors is 

currently unknown. Allelic data from this particular SNP, 

especially the heterozygotes and TN-1 alleles, should be 

cross-referenced with data from the adjacent SNPs to ensure 

the correct genotype call for this SNP. 

 

 
Fig. 2  Fluorescence data of the KASP genotyping assay, with the parental 

alleles represented by red and blue dots, while the green dots are 

heterozygotes and pink dots are SNP alleles that could not be resolved by the 

automatic SNP caller.  

 

After the monomorphic SNPs were excluded and missing 

data were manually verified from the original fluorescence 
data, the final genotype calls were used to identify 

recombinant break points in the region of interest (Fig 3). 

Individuals with varying allelic distribution within the 

interval will be included in a brown planthopper resistance 

test. By correlating an allele's presence, which represents a 

smaller interval within the QTL, with resistance to BPH, the 

segment that confers resistance to BPH can be identified. By 

narrowing down the segment, the number of genes and 

mutations that need to be considered is also reduced, thus 

improving the probability of identifying the underlying 

mutation that confers resistance to BPH. 
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Fig. 3 Patterns of recombination break points in selected F2 progenies. Green 

bars denote heterozygous segments, while red bars represent homozygous 

TN1 alleles and blue bars represent homozygous Untup Rajab alleles. 

D. Phylogeny-Based Preliminary Marker Screening 
Significantly Improved Polymorphic Marker Detection 

We have demonstrated that phylogeny-based pre-screening 

can significantly improve the probability of obtaining 

polymorphic markers. Traditionally, researchers who utilize 

DNA markers in their studies or breeding programs collect a 

large number of DNA markers. Those DNA markers will need 

to be surveyed using parental lines or a sample of the intended 

population to select polymorphic markers in the target 

population [36]. Thus, some of the collected markers may 

never be used because they are monomorphic in all the 

populations used in the collector’s projects.  

As the need for high-density markers like SNP arises, SNPs 
become more commonly used as they are very common in the 

genome and can be scaled up economically. However, SNPs 

also typically have lower polymorphism information content 

(PIC) compared to the other commonly used DNA marker, 

the simple sequence repeat (SSR) markers [37]. Thus, the 

probability of a marker being monomorphic is higher in SNPs 

than SSRs. The reason could be because SNPs are usually 

biallelic [38], which means that they only have two possible 

alleles in each marker. 

Without pre-screening, the probability of obtaining a 

polymorphic marker in our segregating population within the 

interval of interest is 1.06%. Thus, a random selection of SNP 
markers within this interval will yield mostly monomorphic 

markers. The most thorough method to eliminate 

monomorphic marker candidates is by whole-genome 

sequencing since the two parents' whole-genome sequencing 

can identify all monomorphic and polymorphic loci and all 

mutations that cause the resistance to BPH. However, this 

would have incurred high cost and still does not eliminate the 

need for further SNP assays to fine-map recombination 

breakpoints in the segregating population and their 

association with resistance. This is because purely 

computational and prediction analysis of the candidate gene 
in the QTL interval is challenging since the interval contains 

236 genes, and predictions cannot be reliably made if the type 

of resistance is novel. 

Since the two parents, along with their segregating 

progenies, had been genotyped with a high-density SNP chip 

assay for the initial QTL analysis, we hypothesized that there 

was sufficient genotypic data from the 7K SNP chip assay to 

deduce the genetic similarities between the parents and the 

3000 rice accessions sequenced by IRRI. Using 511 SNP data 

from the chip, we identified six genetically most similar 

accessions to TN-1 and six accessions most similar to Untup 

Rajab. The polymorphism between those accessions and the 

two parents ranged from 3.77% to 6.58%, with an average of 

5.54%. By selecting for SNPs that are polymorphic between 
clusters but monomorphic within clusters, we obtained a SNP 

set with a polymorphism rate of 76.19%, much higher than 

the 1.06% detected inside the QTL region. 

We also tested the efficacy of this approach in other parts 

of the genome and in another population. A 400,000 base 

pairs segment in chromosome 11 beginning at base 7,968,253 

was chosen as the target region using a random number 

generator to determine a random spot in the genome. Since 

complete SNP data for Untup Rajab and our TN-1 line were 

not available for this region to check the accuracy of the 

polymorphism predictions, we used the genotype data of the 
10 high-similarity accessions from both clusters to predict the 

genotypes of sequenced TN-1 from IRRI and Sossoka Oule 

from the Untup Rajab cluster. This segment has low DNA 

variability, since we only obtained 5694 SNPs from the 3k 

filtered SNP data set in the IRRI database. Among those, 712 

were polymorphic between TN-1 and Sossoka Oule, but only 

nine were predicted to be polymorphic if they also have to be 

monomorphic in both TN-1 and Untup Rajab clusters (Table 

3). Although there were no false positives among the nine 

SNP candidates, the number of SNP candidates were too low 

and concentrated only in a 100 kb segment. The number of 
SNP candidates can be improved if we reduce each cluster's 

representatives to two accessions. However, the number of 

false positives (SNPs that will be monomorphic between TN-

1 and Sossoka Oule) increased to 19%, which is comparable 

to what we obtained in our study. 

A similar trend was observed when we randomly picked an 

Indica 1B subgroup and an Indica 3 subgroup to find 

polymorphic SNP candidates from a random segment in the 

chromosome. For this, we used the phylogenetic tree 

constructed by IRRI using a higher number of SNPs than ours 

[17]. Using polymorphism data from five accessions closest 

to Ampipit (Indica 3) and five accessions closest to ITA 117 
(Indica 1B), we failed to obtain even one SNP candidate from 

3726 SNPs in the target interval, even though 591 SNPs were 

actually polymorphic between Ampipit and ITA 117 (Table 

3). Reducing the number of accessions for pre-screening to 

two accessions from each cluster improved the identification 

of SNP candidates to 563, at the cost of increased false 

positives of 3.38% among the SNP candidates. Thus, when a 

high-quality phylogenetic tree is used, the number of 

accessions required to predict SNP polymorphism can be 

safely reduced to merely two accessions from each cluster. 
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TABLE III 

PERFORMANCE OF PHYLOGENY-BASED POLYMORPHIC SNP SELECTION IN A RANDOMLY-SELECTED CHROMOSOME INTERVAL AND POPULATION 

Parents Chromosome Interval 

(chromosome: start-stop) 

SNP 

Number 

Total 

Poly 

Poly 

in C2 

False + 

in C2 

False – 

in C2 

Poly 

in C5 

False + 

in C5 

False – 

in C5 

TN-1   
Sossoka Oule 

CHR11:7968253-8068252 1600 251 4 2 247 0 0 251 

CHR11:7868253-7968252 1432 397 184 28 213 9 0 397 

CHR11:7768253-7868252 1494 59 25 7 34 0 0 59 

CHR11:7689253-7768252 1168 5 3 5 2 0 0 5 

 Total 5694 712 216 42 496 9 0 712 

Ampipit 

ITA 117 

CHR7:5635847-5735846 953 551 532 14 19 0 0 551 

CHR7:5535847-5635846 839 30 29 4 1 0 0 30 

CHR7:5435847-5535846 1114 9 2 2 7 0 0 9 

CHR7:5335847-5435846 820 1 0 0 1 0 0 1 

 Total 3726 591 563 20 28 0 0 591 

Codes: Poly = polymorphic SNPs ; C2 = cluster where each parental cluster has 2 accessions; C5 = cluster where each parental cluster has 5 accessions 

E. Possible Improvements and Automation 

Although the SNP pre-screening method can reduce our 
fine-mapping program's cost and time, we also noted that this 

approach currently has some undesirable characteristics that 

may hinder its wider adoption by other researchers. Firstly, 

this approach relies on the abundant availability of genomic 

data in rice, where high-quality reference genome and whole-

genome sequence data are already available for thousands of 

rice accessions that represent the worldwide genetic diversity 

of rice [39]. Researchers working on other crops may not have 

such luxury [40], making this approach difficult to apply for 

such crops. 

Another factor that needs to be considered is that this 
approach requires basic bioinformatics skills to extract the 

large volume of data provided by IRRI. For this study, we 

worked with raw data from IRRI using various tools that 

could be daunting to learn for many researchers. However, a 

large portion of the procedures can be performed on IRRI’s 

online SNP database, such as the steps of extracting the 7K 

SNP chip data from 3000 rice accessions and extraction of 

SNPs from a given interval from a list of rice accessions. The 

phylogenetic analysis and SNP collection can be easily done 

in regular windows-based computers commonly used by the 

general public. It is also possible to develop a web-based 

software solution, similar to the ones developed by Ha et al. 
[41] to identify the closest relative by submitting DNA 

variation data. Screening of common SNPs in a cluster that is 

polymorphic in a different cluster is similarly amenable to 

software automation. Thus, it is possible to develop a 

completely automatic toolset that is easy to use, where users 

will only need to submit the parental genotype data and the 

desired genomic location where new SNPs need to be 

generated to obtain the desired SNP candidates. 

Another data component that could be unfamiliar to other 

researchers is the 7K SNP chip data. The chip contains 7098 

SNPs can be used for various purposes such as diversity 
analysis, mapping, fingerprinting, and genotyping of some 

known traits. It is offered as a genotyping service by IRRI, 

and we found that the savings in time and labor during the 

QTL mapping stage could justify the cost of the service. 

Among the 7098 SNPs, 1046 were polymorphic between the 

parents and 885 had proper mendelian segregation and 

acceptable level of missing data to produce sufficiently dense 

genetic and QTL map and for phylogenetic analysis in this 

study. It is possible to use other genotyping methods such as 

SSR to be used as the initial data for phylogenetic analysis, 

provided that sufficient markers are assayed to obtain a 

reasonably accurate phylogenetic tree. However, it will be 

more difficult to cross-reference the allelic data with the 3000 
rice genome data, as they need to be converted to 

insertion/deletion data using indel data convention used by 

IRRI [42].  

The type of SNP assays that will be used for the selected 

SNPs should also be considered to obtain optimal results. For 

example, our assay of choice was KASP, which is based on 

PCR. Consequently, SNP candidates' choice should account 

for whether the flanking sequences are suitable for primer 

design. Therefore, extreme GC content, self-complementary 

sequences, and duplication in the genome must be avoided 

when the final SNP set is selected among the candidates. 

Other assay types such as Infinium and axiom arrays are not 
suitable for G/C or A/T polymorphism [43], [44], so they need 

to be eliminated from the pool of SNP candidates if the 

resulting SNPs will be assayed using such methods. 

IV. CONCLUSION 

This study has validated the efficacy of candidate SNP 

identification based on phylogenetic and whole-genome 

sequence data to increase the likelihood of obtaining 
polymorphisms in segregating populations significantly. The 

screening system produced 76.19% observed polymorphism 

in our F2 population, which was much higher than 1.06% 

expected polymorphisms from random SNP selection. The 

use of higher quality phylogenetic trees, which are influenced 

by the number of markers to generate the tree, can improve 

the screening process since fewer accessions can be used for 

SNP screening, and the resulting candidates have less 

monomorphic SNPs. The screening method does not require 

high computing power or advanced bioinformatics skills. It is 

amenable to automation so a more user-friendly software can 

be developed to accommodate more users interested in 
utilizing genomic information for genetic studies plant 

breeding. 

 

826



ACKNOWLEDGMENT 

The authors are grateful to Fajar Suryawan and Riko 

Harmando for their assistance in the sample collection stage. 

This study is funded by DIPA BB Biogen in the 2018 fiscal 

year.  

REFERENCES 

[1] X. Zhang et al., “Combining QTL-seq and linkage mapping to fine 

map a wild soybean allele characteristic of greater plant height,” BMC 

Genomics, vol. 19, no. 1, p. 226, Mar. 2018. 

[2] M. P. M. Thoen et al., “Genetic architecture of plant stress resistance: 

multi-trait genome-wide association mapping,” New Phytol., vol. 213, 

no. 3, pp. 1346–1362, Feb. 2017. 

[3] M. Schreiber, N. Stein, and M. Mascher, “Genomic approaches for 

studying crop evolution,” Genome Biology, vol. 19, no. 1. BioMed 

Central Ltd., pp. 1–15, 21-Sep-2018. 

[4] B. M. Sharif et al., “Genome-wide genotyping elucidates the 

geographical diversification and dispersal of the polyploid and 

clonally propagated yam (Dioscorea alata),” Ann. Bot., vol. 126, no. 6, 

pp. 1029–1038, Nov. 2020. 

[5] S. Dreisigacker et al., “Tracking the adoption of bread wheat varieties 

in Afghanistan using DNA fingerprinting,” BMC Genomics, vol. 20, 

no. 1, pp. 1–13, Aug. 2019. 

[6] M. A. Nadeem et al., “DNA molecular markers in plant breeding: 

current status and recent advancements in genomic selection and 

genome editing,” Biotechnol. Biotechnol. Equip., vol. 32, no. 2, pp. 

261–285, Mar. 2018. 

[7] N. Qureshi et al., “Fine mapping of the chromosome 5B region 

carrying closely linked rust resistance genes Yr47 and Lr52 in wheat,” 

Theor. Appl. Genet., vol. 130, no. 3, pp. 495–504, 2017. 

[8] A. Rasheed et al., “Crop Breeding Chips and Genotyping Platforms: 

Progress, Challenges, and Perspectives,” Molecular Plant, vol. 10, no. 

8. Cell Press, pp. 1047–1064, 07-Aug-2017. 

[9] H. Ayalew et al., “Comparison of TaqMan, KASP and rhAmp SNP 

genotyping platforms in hexaploid wheat,” PLoS One, vol. 14, no. 5, 

p. e0217222, May 2019. 

[10] L. Mansueto et al., “Rice SNP-seek database update: New SNPs, 

indels, and queries,” Nucleic Acids Res., vol. 45, no. D1, pp. D1075–

D1081, Jan. 2017. 

[11] Z. Li et al., “The 3,000 rice genomes project,” Gigascience, vol. 3, no. 

1, p. 7, Dec. 2014. 

[12] H. Peng et al., “MBKbase for rice: An integrated omics 

knowledgebase for molecular breeding in rice,” Nucleic Acids Res., 

vol. 48, no. D1, pp. D1085–D1092, 2020. 

[13] K. Y. Morales et al., “An improved 7K SNP array, the C7AIR, 

provides a wealth of validated SNP markers for rice breeding and 

genetics studies,” PLoS One, vol. 15, no. 5, p. e0232479, May 2020. 

[14] M. Yunus et al., “Mapping of Resistance Genes to Brown Planthopper 

in Untup Rajab, an Indonesian Local Rice Variety,” J. AgroBiogen, 

vol. 14, no. 2, p. 75, Dec. 2018. 

[15] S. Dellaporta, J. Wood, and J. Hicks, “A plant {DNA} mini-

preparation: version {III}.,” Plant Mol. Biol. Report., vol. 41, no. 4, pp. 

19–21, 1983. 

[16] “7k Infinium SNP genotyping - Genotyping Services Laboratory.” 

[Online]. Available: https://sites.google.com/a/irri.org/snp-

genotyping-mmal/genotyping/infinium-7k?overridemobile=true. 

[Accessed: 04-Jun-2020]. 

[17] “Rice SNP-Seek Database.” [Online]. Available: https://snp-

seek.irri.org/. [Accessed: 04-Jun-2020]. 

[18] S. Purcell et al., “PLINK: A tool set for whole-genome association and 

population-based linkage analyses,” Am. J. Hum. Genet., vol. 81, no. 

3, pp. 559–575, Sep. 2007. 

[19] Perrier X. and J.-C. J.P., “DARwin - Dissimilarity Analysis and 

Representation for Windows,” 2006. [Online]. Available: 

https://darwin.cirad.fr/. [Accessed: 04-Jun-2020]. 

[20] I. Letunic and P. Bork, “Interactive Tree of Life (iTOL) v4: recent 

updates and new developments,” Nucleic Acids Res., vol. 47, no. W1, 

pp. W256–W259, Apr. 2019. 

[21] A. R. Quinlan, “BEDTools: The Swiss-Army tool for genome feature 

analysis,” Curr. Protoc. Bioinforma., vol. 2014, no. 1, pp. 11.12.1-

11.12.34, Sep. 2014. 

 

[22] “KASP genotyping chemistry | LGC Biosearch Technologies.” 

[Online]. Available: https://www.biosearchtech.com/products/pcr-

kits-and-reagents/genotyping-assays/kasp-genotyping-chemistry. 

[Accessed: 04-Jun-2020]. 

[23] R. Van Berloo, “GGT 2.0: Versatile Software for Visualization and 

Analysis of Genetic Data,” J. Hered., no. 2, pp. 232–236, 2008. 

[24] “Random number.” [Online]. Available: 

https://www.google.com/search?q=random+number. 

[25] S. Sandmann et al., “Evaluating Variant Calling Tools for Non-

Matched Next-Generation Sequencing Data,” Sci. Rep., vol. 7, no. 

43169, pp. 1–12, 2017. 

[26] F. Pfeiffer et al., “Systematic evaluation of error rates and causes in 

short samples in next-generation sequencing,” Sci. Rep., vol. 8, no. 

10950, pp. 1–14, 2018. 

[27] X. Tang et al., “A large-scale whole-genome sequencing analysis 

reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) 

nucleases in rice,” Genome Biol., vol. 19, no. 1, p. 84, Jul. 2018. 

[28] T. R. Hargrove, W. R. Coffman, and V. L. Cabanilla, “Genetic 

interrelationships of improved rice varieties in Asia,” IRRI Res. Pap. 

Ser., vol. 23, p. 34p, 1978. 

[29] M. Exposito-Alonso et al., “The rate and potential relevance of new 

mutations in a colonizing plant lineage,” PLoS Genet., vol. 14, no. 2, 

p. e1007155, Feb. 2018. 

[30] M. J. Thomson et al., “Large-scale deployment of a rice 6 K SNP array 

for genetics and breeding applications,” Rice, vol. 10, no. 1, p. 40, Dec. 

2017. 

[31] C. He, J. Holme, and J. Anthony, “SNP genotyping: The KASP assay,” 

Methods Mol. Biol., vol. 1145, pp. 75–86, 2014. 

[32] S. Yang et al., “An extended KASP-SNP resource for molecular 

breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis),” PLoS 

One, vol. 15, no. 10, p. e0240042, Oct. 2020. 

[33] S. Bustin and J. Huggett, “qPCR primer design revisited,” 

Biomolecular Detection and Quantification, vol. 14. Elsevier GmbH, 

pp. 19–28, 01-Dec-2017. 

[34] F. C. Silva, G. T. Torrezan, R. C. Brianese, R. Stabellini, and D. M. 

Carraro, “Pitfalls in genetic testing: a case of a SNP in primer-

annealing region leading to allele dropout in BRCA1,” Mol. Genet. 

Genomic Med., vol. 5, no. 4, pp. 443–447, Jul. 2017. 

[35] P. Stothard, “Sequence Manipulation Suite: PCR Primer Stats.” 

[Online]. Available: https://www.bioinformatics.org/sms2/pcr_ 

primer_stats.html. [Accessed: 30-Mar-2020]. 

[36] B. C. Colburn, S. A. Mehlenbacher, and V. R. Sathuvalli, 

“Development and mapping of microsatellite markers from 

transcriptome sequences of European hazelnut (Corylus avellana L.) 

and use for germplasm characterization,” Mol. Breed., vol. 37, no. 2, 

pp. 1–14, Feb. 2017. 

[37] P. Gramazio, J. Prohens, D. Borràs, M. Plazas, F. J. Herraiz, and S. 

Vilanova, “Comparison of transcriptome-derived simple sequence 

repeat (SSR) and single nucleotide polymorphism (SNP) markers for 

genetic fingerprinting, diversity evaluation, and establishment of 

relationships in eggplants,” Euphytica, vol. 213, no. 12, pp. 1–18, Dec. 

2017. 

[38] S. A. Kaiser, S. A. Taylor, N. Chen, T. S. Sillett, E. R. Bondra, and M. 

S. Webster, “A comparative assessment of SNP and microsatellite 

markers for assigning parentage in a socially monogamous bird,” Mol. 

Ecol. Resour., vol. 17, no. 2, pp. 183–193, Mar. 2017. 

[39] R. Kamboj, B. Singh, T. K. Mondal, and D. S. Bisht, “Current status 

of genomic resources on wild relatives of rice,” Breed. Sci., vol. 70, 

no. 2, pp. 135–144, 2020. 

[40] J. A. Labate, J. C. Glaubitz, and M. J. Havey, “Genotyping by 

sequencing for SNP marker development in onion,” Genome, vol. 63, 

no. 12, pp. 607–613, 2020. 

[41] J. Ha et al., “Soybean-VCF2Genomes: A database to identify the 

closest accession in soybean germplasm collection,” BMC 

Bioinformatics, vol. 20, no. S13, p. 384, Jul. 2019. 

[42] L. Li et al., “An accurate and efficient method for large-scale SSR 

genotyping and applications,” Nucleic Acids Res., vol. 45, no. 10, p. 

e88, 2017. 

[43] D. Iamartino et al., “Design and validation of a 90K SNP genotyping 

assay for the water buffalo (Bubalus bubalis),” PLoS One, vol. 12, no. 

10, p. e0185220, 2017. 

[44] Q. You, X. Yang, Z. Peng, L. Xu, and J. Wang, “Development and 

applications of a high throughput genotyping tool for polyploid crops: 

Single nucleotide polymorphism (SNP) array,” Frontiers in Plant 

Science, vol. 9. Frontiers Media S.A., p. 104, 06-Feb-2018. 

 

827




