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Abstract— In this paper, we proposed the modified deep learning method that combined Convolutional Neural Network (CNN) and 
Kernel K-Means clustering for lung cancer diagnosis. The Anti-PD-1 Immunotherapy Lung dataset obtained from The Cancer 
Imaging Archive was used to evaluate our proposed method. From this dataset, we use 400 Magnetic Resonance Imaging (MRI) 
images that manually labeled consists of 150 healthy lung images and 250 lung cancer images. As the first step, all the data was 
examined through the CNN architecture. The flatten neuron of the feature map for every image resulted from the convolutional 
layers in CNN is gained and passed through the kernel k-means clustering algorithm. This algorithm then used to obtain the centroid 
of each cluster that determines the prediction class of every data point in the validation set. The performance of our proposed method 
was evaluated using several k values in k-fold cross-validation. According to our experiments, our proposed method achieved the 
highest performance measure with 98.85 percent accuracy, 98.32 percent sensitivity, 99.40 percent precision, 99.39 percent specificity, 
and 98.86 percent F1-Score when using RBF kernel function with sigma=0.05 in 9-fold cross-validation. Those performance improves 
1.31% sensitivity, 1.12% accuracy, 1.11% F1-Score, 0.92% specificity, and 0.91% precision compared to when using 5-fold cross-
validation. It is even obtained in less than 8 seconds for passing the dataset to the CNN model and 40 ± 0.77 seconds for examined in 
kernel k-means clustering. Therefore, it was proved that our proposed method has an efficient and promised performance for lung 
cancer diagnosis from MRI images.  
 
Keywords— artificial intelligence; artificial neural network; deep learning; image classification; kernel function; k-means clustering; 
lung cancer diagnosis. 
 
 

I. INTRODUCTION 

The high popularity of deep learning was already 
expected due to the increase in the volume and complexity 
of data. In the medical applications, Convolutional Neural 
Networks (CNN) is the most popular among the other 
commonly used deep learning algorithms, such as recurrent 
neural networks, deep belief networks, and deep neural 
networks [1]. This method is widely used when it comes to 
medical image analysis from a Computerized Tomography 
(CT) scan or Magnetic Resonance Imaging (MRI) results [2]. 
González et al. [3] used CNN to examine the type of chronic 
lung illness prognosis from the CT-scan image. Sun et al. [4] 
compared the performance of CNN, Deep Belief Networks 
(DBN), Stacked Denoising Autoencoder (SDAE) using CT-
scan image to diagnose lung cancer and concluded DBN as 
the method that has the highest accuracy (0.8119). Anirudh 

et al. [5] also used CNN in CT-scan images for lung nodule 
detection when there is weak label information. Meanwhile, 
Causey et al. [6] used CNN to classify lung cancer nodule 
malignancy, and his approach achieved 99% accuracy. The 
combination of CNN and the other methods seems to be 
developed in the last few years. The U-Net with 3D CNN 
was introduced by Chon et al. [7], which deliver 70% 
accuracy. Winkels and Cohen [8] also tried to use 3D roto-
translation group convolutions in CNN to achieve a Free-
Response Operating Characteristic (FROC) score close to 
the CNN with fewer data. Meanwhile, Zhang et al. [9] 
conducted the promising Mask Region-Based Convolutional 
Neural Network (Mask R-CNN) architecture, which has 90% 
precision, 100% recall, and 95% F1-score.  

Moreover, the combination of the CNN model 
architecture could also happen with the robust classifier in 
machine learning. For instance, CNN has been combined 
with Support Vector Machines (SVM), which has proved to 
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gain higher accuracy than original CNN, by Leng et al. [10] 
for image classification, Niu et al. [11] for recognizing 
handwritten digits, and Elleuch et al. [12] for Arabic 
Handwritten Recognition. There are machine learning 
methods that commonly used to classify data such as 
Random Forest (RF) and SVM. Those methods have been 
used in any field, including medical and financial. For 
example, RF has been used for predicting osteoarthritis 
disease by Apriliani et al. [13] and prostate cancer by 
Huljanah et al. [14]. Meanwhile, SVM has been used in 
classifying policyholders satisfactorily in automobile 
insurance by Rustam et al. [15] and schizophrenia data by 
Rampisela et al. [16]. It was also used for detecting cancer 
data by Nadira et al. [17], and also has been used for face 
recognition by Rustam et al. [18]. Both of those methods 
frequently have accuracy higher than 90 percent.  

However, instead of using a classifier in the machine 
learning algorithm for the classification task, the clustering 
method seems compelling to use. In the previous research, 
many clustering methods have already been used for 
classifying. Among them, there was kernel spherical k-
means used by Arfiani et al. [19] for distinguishing acute 
and chronic sinusitis. There was also fuzzy kernel k-medoids 
used by Rustam and Talita [20] for detecting anomaly 
problems. In terms of their performance, clustering methods 
have the same chance to develop to do the classification task.  

Therefore, in this research, we proposed combining CNN 
architecture with the kernel k-means clustering in this paper. 
Kernel k-means clustering is chosen due to its simplicity in 
implementation and its ability because of the use of kernel. 
According to the experiments done by Guérin and Boots 
[21], we can conclude that our proposed method is feasible 
because CNNs can be used as feature extractors for many 
applications, and clustering is no exception. 

II. MATERIALS AND METHODS 

A. Dataset 

The dataset used in this research is the Anti-PD-1 
Immunotherapy Lung dataset obtained from The Cancer 
Imaging Archive [22]. This collection includes 46 lung cases 
treated with anti-PD1 immunotherapy in 2016, each with 
pre-treatment and most with one imaging follow-up 
timepoint. However, we only use 400 MRI images that 
manually labeled consists of 150 healthy lung images and 
250 lung cancer images. The size of all the images used in 
this paper is 152 x 152 x 1 pixels.  

 

 
Fig. 1  The sample of the lung cancer MRI image 

For the example of lung cancer image (see Fig. 1), the 
existence of the cancer is indicated by the presence of blood 
inside the lung. Meanwhile, for the example of a healthy 
lung image (see Fig. 2), the dark gray area inside the area of 
ribs only shows the existence of the heart, and there is no 
presence of blood.  

 

 
Fig. 2 The sample of healthy lung MRI image 

B. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is one of the deep 
feed-forward artificial neural network architectures that is 
frequently used in computer vision problems such as image 
classification. The difference between CNN and multilayer 
perceptron (MLP) network is its usage of convolutional 
layers, pooling, and non-linearities such as tanh, sigmoid, 
and ReLU [23].  

In this paper, we used the architecture combining CNN 
and Kernel K-Means clustering with the RBF kernel 
function with several values of σ. The performance of our 
proposed method was evaluated using several k values in k-
fold cross-validation. As the first step, all the data was 
examined through the CNN architecture (see Fig. 3) that 
consists of the convolutional layer, activation function, 
pooling layer, and normalization layer. In this paper, Keras, 
as the python deep learning library, is used to build the 
model architecture. 

Consider an input grayscale image with a size of 152 x 
152 x 1 pixels. This input image will be processed through a 
convolutional layer with the Rectified Linear Unit (ReLU) 
activation function, maximum pooling layer, and 
normalization layer, respectively, before finally be applied 
dropout and make the output flat. 

Each convolutional neural network consists of a different 
number of convolution layers depending on the network 
requirements [24]. In this paper, five convolutional layers 
with the same size 3 x 3 are used. In the first convolutional 
layer, we use 32 filters and then 64 filters in the second 
convolutional layer. In the middle, or the third convolutional 
layer, 96 filters is used. The number of filters then back to 
64 and 32 filters in the fourth and last convolutional layer, 
respectively. The amount of filters in the convolutional layer 
is chosen wisely considering the output size of flatten layer. 
The output is managed so that it is not huge for being an 
input in kernel k-means clustering.  
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Fig. 3 The CNN architecture used in this paper 

 
In the convolutional layers, we use a convolution process 

through the utilization of filters inside, which has similar 
size as that of an image in general, including the length and 
height (pixels), as well as width [25], as illustrated in Fig. 4 
[26].  

 

 
Fig. 4 Illustration of convolutional layer 

 
This layer constructs a convolution kernel that is 

convoluted with the layer input to produce a tensor of 
outputs through the dot product computation. Convolution 
operation extracts useful features from locally correlated 

data points. The output of the convolutional kernels is 
assigned to the non-linear processing unit (activation 
function), which not only helps in learning abstractions but 
also embeds non-linearity in the feature space [27]. 

Consequently, an activation function is used for 
familiarizing non-linearities in the computation so that the 
model does not only learn linear mappings. As the activation 
function, ReLU is used to faster computations compared to 
other activation functions such as tanh and sigmoid 
functions. This activation function is also the most widely 
used activation function for deep learning because of its 
ability to deliver better performance and generalization in 
deep learning compared to tanh and sigmoid activation 
function [28]. ReLU is a linear and numerically less 
complicated function that retains the positive values of the 
input, while the negative values are turned to zero [29]. 
Simply thresholding matrix values implement ReLU at zero 
(see Eq. 1) 

 
 f(hθ(x)) = max(0, hθ(x)) (1) 

 
The pooling layer is then used to decrease the resolution 

of the image in order to decrease the number of parameters 
that also cause a decrease in the computational burden [30]. 
the pooling process commonly used includes: (1) max 
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pooling, where the use of 2x2 with stride 2 leads to the 
maximum value of 2x2 pixel area selected for each shift, (2) 
average pooling, which chooses its mean value In this paper, 
max-pooling was used over the average pooling because it is 
commonly used in CNN architecture.  

The normalization layer was then used after that due to 
the purpose of preventing model divergence [31]. The 
normalization layer used to normalize the activations of the 
previous layer at each batch. For example, it applied a 
transformation that maintains the mean activation close to 0 
and the activation standard deviation close to 1.  

As the last step in CNN model architecture, the dropout is 
used so that the network can generalize better, and the 
influence of an individual neuron on the output produced is 
reduced [32]. We use dropout = 0.2 in this paper; therefore, 
80 percent of the information on every image is kept. As a 
result, we can see the output image after passing the last 
convolutional layer in Fig. 5 for the lung cancer image and 
Fig. 6 for the healthy lung image.  
 

 
Fig. 5  The result of the last convolutional layer for the image in Figure 1 

 

 
Fig. 6  The result of the last convolutional layer for the image in Figure 2 

 
The neuron resulted from the dropout layer is then flatten 

and form a vector with length 6272 for every image. The 
flatten neuron resulted by CNN represents the data image 
with a smaller size [33]. These outputs were then compiled 
to matrix data; therefore, we then have matrix 400 x 6272, 
which contains the flatten output of lung cancer image and 
healthy lung image. After getting the matrix, we broke down 
this matrix into two matrices. One matrix 250 x 6272 for the 
image labeled lung cancer (class 1) and one matrix 150 x 
6272 for the image labeled healthy lung (class 0).  

Because we used k-fold cross-validation, one fold was 
used to find the centroid of each cluster while the k−1 folds 
used as the validation set. The prediction class of the dataset 
in k−1 folds were determined according to its nearest 
centroid. If the data point is closer to the centroid of class 1, 
then the prediction class of this data point is 1. Meanwhile, if 
it is nearer to the centroid of the class 0, then the prediction 
class of it is 0.  

C. Kernel K-Means Clustering 

To find the centroid of each cluster, we followed the 
algorithm of kernel k-means clustering (see Fig. 7).  

 
 
Input:  
X = {x1, x2, …, xN}, C (the number of cluster),  

  ε (epsilon), T (the maximum number of iterations). 
 
Output:  
V = {v 1, v2, …, vC},  
U = [ rnc ] where n = 1, 2, …, N and c = 1, 2, … C. 
 
1. Initialization: V0 = {v1, v2, …, vC}, 
2. Update membership of the data point xi in jth-cluster.  
3. If c = argminj (K(xn, xn) - 2 K(xn, μc) + K(μc, μc)), 

then rnc = 1. Otherwise, rnc = 0. 
4. Update cluster center Vt using:  

μc = (Σn rnc xn ) / Σn rnc,  c = 1, 2, …, C 
5. Check the stop criteria. If || V(t-1) – V(t) || <ε or T = t, 

then the iteration stops. Otherwise, t = t+1 and go 
back to step 2; 

6. End. 
 

Fig. 7  The algorithm of Kernel K-Means clustering [34] 
 

K-Means (KM) clustering based on kernel came from K-
Means clustering that was introduced by Lloyd [35] in 1982 
as the non-probabilistic technique that used to cluster the 
data. Consider dataset {x1, x2, …, xN}, which has N data 
points where x is the D-dimensional data point. The centroid 
of each cluster was defined as μc where c = 1, 2, …, C, while 
rnc ϵ {0, 1} where c = 1, 2, …, C was defined as the indicator 
whether the data points are in the cluster (denoted as 1) or 
not (denoted as 0).  

The goal of KM clustering is to minimize its objective 
function (see Eq. 2) so that every data point is in the cluster 
where the centroid is nearest [36].  

 
 JKM = ΣnΣc rnk ||xn – μc||

2 (2) 
 

Assumed the mapping function ϕ which mapped the input 
data x to the higher dimensional feature space ϕ(x). Because 
now we work in this feature space, the objective function in 
Eq. 2 becomes as shown in Eq. 3. 

 
 JKM = ΣnΣc rnc || ϕ(xn) – ϕ(μc) ||

2 (3) 
 
Considering the computational cost of the distance of two 

points in the higher dimensional feature space, Vapnik [37] 
defined the kernel function (see Eq. 4) for every x ϵ ℝn as the 
dot product of the mapped result of x in the feature space.  

 
 K(x, y) = (ϕ(x))T ϕ(y) (4) 
 

According to Eq. 4, the distance between ϕ(xn) and ϕ(μc) can 
be computed, as shown in Eq. 5.  

 
 ||ϕ(xn) – ϕ(μc)||

2
 = K(xn, xn) - 2 K(xn, μc) + K(μc, μc)    (5) 

 
Therefore, the objective function of Kernel K-Means 

clustering becomes the Eq. 6 with the same goal as the KM 
clustering [34]. 
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 JKKM  = ΣnΣc rnc (K(xn, xn) - 2 K(xn, μc) + K(μc, μc))     (6) 
 
Also, K(x, y) is defined as the kernel function [37] of two 

data points. In this paper, the Radial Basis Function (RBF) 
kernel function [38] was used using the several values of σ 
in these experiments, where the formula shown in Eq. 7. 

 
 K(x, y) = exp(-||x -y||2/(2σ2)) (7) 

D. Our Proposed Method 

Unlike previous researches in image classification that 
combined CNN to other deep learning techniques such as 
Recurrent Neural Network (RNN) by Yin et al. [39] and 
Long-Short Term Memory (LSTM) by Aditi et al. [40], we 
proposed the method that combined widely-used CNN with 
one of the well-known machine learning methods. However, 
it is not Support Vector Machines (SVM) like what Sugg [41] 
did in his thesis, or Copur et al. [42] did in their paper, but 
we combine CNN with KM clustering based on RBF kernel 
instead.  

First, using 5-fold cross-validation, we conducted the 
experiments to find the optimal RBF parameter σ. After that, 
the value of σ is then used to several k in k-fold cross-
validation. The flowchart of our experiment is illustrated in 
Figure 8.  
 

 
Fig. 8  The flowchart of CNN + K-Means Clustering based on RBF kernel 
that we used in this research 
 

As the input of CNN, we used all of 400 labeled images: 
1 for lung cancer images and 0 for healthy lung images. The 
images are resized to the same size 152 x 152 pixels. This 
input is then passed to the bunch of CNN layers, as 
described in Figure 3. As a result, every image 152 x 152 x 1 
pixel became a vector with length 6272. Therefore, we now 
have matrix 334 x 6272, where the row index is indicated 
the image that we observed and the column index is 
indicated the feature map resulted by CNN.  

The next step is then dividing the matrix data according to 
its label, whether it is included in class 1 (lung cancer) or 
class 0 (healthy lung). In this case, we have two matrices 

data with size 150 x 6272 for the healthy lung and 250 x 
6272 for lung cancer class. 

Those matrices were then used in k-fold cross-validation 
for evaluating KM clustering based on kernel algorithm. For 
example, when we used 5-fold cross-validation, the data is 
divided into five folds for each class. Therefore, we get the 
number of points in every fold as shown in Table I.  

TABLE I 
THE NUMBER OF DATA IN EVERY 5 FOLDS OF LUNG CANCER DATASET 

Fold 
The number of lung 
cancer data points 

The number of healthy 
lung data points 

1 50 30 
2 50 30 
3 50 30 
4 50 30 
5 50 30 

Total 250 150 
 
The k-fold cross-validation using KM clustering based on 

kernel might be different from the usual used in supervised 
learning method in machine learning. In this KM clustering 
based on kernel, a fold was used to obtain the centroids of 
the clusters according to the algorithm in Figure 7, while the 
rest k−1 folds were used to evaluate the method by 
determining the class of every data point according to its 
nearest centroid. If the data point was nearer to the centroid 
of class 1, then the predicted class for this data point is 1. 
Meanwhile, if the data point was nearer to the centroid of 
class 0, then the predicted class for this data point is 0. 

The performance of our proposed method is examined 
using the confusion matrix [43]. In the confusion matrix, we 
can obtain the number of True Positives (TP), True Negative 
(TN), False Positive (FP), False Negative (FN) that resulted 
from our model. TP represents the number of lung cancer 
images that correctly diagnosed as lung cancer, and TN 
represents the number of healthy lung images that correctly 
diagnosed as a healthy lung. Meanwhile, the wrong 
diagnosis is shown by FN and FP. When the actual class is 
lung cancer, but it was diagnosed as a healthy one, then it 
counts as FN. On the other side, when the healthy one is 
diagnosed has lung cancer, it counts as False Positive. The 
confusion matrix is shown in Table 2. 

TABLE II 
CONFUSION MATRIX FOR LUNG CANCER DATASET 

Confusion Matrix 
Predicted Class 

Lung Cancer Healthy 
Actual 
Class 

Lung Cancer TP FN 
Healthy FP TN 

 
The performance of our proposed method is examined 

using the accuracy, sensitivity, precision, specificity, and F1-
Score, which the formulas are shown in Eq. (8)-(12) below 
[44]. 
 

 Accuracy = (TP + TN) / (TP + FP + TN + FN) (8) 
 Sensitivity = TP / (TP + FN) (9) 
 Precision = TP / (TP + FP) (10) 
 Specificity = TN / (TN + FP) (11) 
F1-Score=(2×Sensitivity×Precision)/(Sensitivity+Precision) (12) 
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According to Kotu and Deshpande [45] reveled that the 
ability of the classifier to select all necessary cases to select 
and reject all necessary cases to reject is defined as accuracy. 
The ability of a classifier to select all the necessary cases to 
select is defined as sensitivity. In the meantime, the 
proportion of all relevant cases found is defined as precision. 
Besides, the ability of a classifier to reject all the necessary 
cases to reject is defined as specificity.  

As we noticed in the beginning, we have 150 healthy lung 
images and 250 lung cancer images, which is an unbalanced 
data. Therefore, the balanced accuracy or F1-Score is used to 
confirm that accuracy is crosschecked by balanced data. It is 
defined as the mean of arithmetic on the class retracting 
accuracy. It represents the accuracy attained on positive and 
negative instances, correspondingly.  

III.  RESULTS AND DISCUSSION 

The performance of our proposed method first evaluated 
using several RBF kernel parameter σ (see Table 3). Several 
values of σ were chosen from range 10-8 to 104. From this 
table, we can see that their performance varies, but always 
delivered score above 90 percent in accuracy, sensitivity, 
precision, specificity, or even F1-Score. Moreover, it was 
obtained that σ = 0.05 delivered the highest performance 
measure among the others. With using σ = 0.05, we can 
classify the lung cancer with 97.75% accuracy, 97.04% 
sensitivity, 98.50% precision, 98.48% specificity, and 
97.77% F1-Score. 

TABLE III 
THE PERFORMANCE OF 5-FOLD CROSS-VALIDATION OF CNN + KERNEL K-
MEANS CLUSTERING USING RBF KERNEL FUNCTION FOR LUNG CANCER 

DIAGNOSIS 

σ Accuracy Sensitivity Precision Specificity 
F1-

Score 
10-8 96.42 96.96 95.83 95.88 96.39 
10-4 96.75 96.98 96.50 96.52 96.74 
10-3 96.50 94.71 98.50 98.44 96.57 

5×10-2 97.75 97.04 98.50 98.48 97.77 
10-1 95.50 96.91 94.00 94.17 95.43 
1 96.00 96.94 95.00 95.10 95.96 
10 95.95 95.45 96.50 96.46 95.97 
102 95.45 96.33 94.50 94.60 95.41 
103 94.90 95.35 94.40 94.46 94.87 
104 94.35 94.31 94.40 94.39 94.35 

 
Furthermore, we then evaluated several values of k in k-

fold cross-validation such as k = 5, 7, 9, and 11 to see how 
the number of folds influences the performance of this 
method. As the results, we can see in Table 4 that the 
performance of our proposed method was excellent in all of 
selected k value; however, it was optimal when using 9-fold 
cross-validation with 98.85% accuracy, 98.32% sensitivity, 
99.40% precision, 99.39% specificity, and 98.86% F1-Score. 
These scores improved compared to the previous results in 
Table 2. There are improvements in any aspect of 
performance measurement. The biggest one is 1.31% 
improvement in sensitivity, followed by 1.12% improvement 
in accuracy, and 1.11% in F1-Score. Meanwhile, the 
precision improves 0.91% and there is 0.92% improvement 
in specificity. 

TABLE IV 
THE PERFORMANCE OF CNN + KERNEL K-MEANS CLUSTERING USING RBF 

KERNEL FUNCTION WITH SIGMA = 0.05 FOR LUNG CANCER DIAGNOSIS 

k Accuracy Sensitivity Precision Specificity F1-
Score 

5 97.75 97.04 98.50 98.48 97.77 
7 96.35 94.52 98.40 98.33 96.42 
9 98.85 98.32 99.40 99.39 98.86 
11 97.85 98.28 97.40 97.42 97.84 

 
Therefore, according to Table 3 and Table 4, we obtained 

the best results when 9-fold cross-validation and RBF kernel 
parameter σ = 0.05 is used. For the time computational time 
that our proposed method needs, it takes less than 8 seconds 
for passing the dataset to the CNN model and 40 ± 0.77 
seconds on average for running the k-fold cross-validation 
on KM clustering based on RBF kernel. Hence, it shows that 
our proposed method is not only accurate but also more 
efficient in time.  

IV.  CONCLUSION 

We analyzed the performance of combined Convolutional 
Neural Network (CNN) and Kernel K-Means clustering for 
lung cancer diagnosis. The Anti-PD-1 Immunotherapy Lung 
dataset obtained from The Cancer Imaging Archive is used. 
We passed every image in this dataset through the 
convolutional layers on CNN. After that, we used the 
compilation of the flatten neuron of the feature map in the 
form of a matrix to the kernel k-means clustering algorithm 
for obtaining the centroid of each cluster that determines the 
prediction class of every data point in the validation set. 
According to our experiments, our proposed method 
achieved the best performance with 98.85 percent accuracy, 
98.32 percent sensitivity, 99.40 percent precision, 99.39 
percent specificity, and 98.86 percent F1-Score when using 
the RBF kernel function with sigma=0.05 in 9-fold cross-
validation. It is even obtained in 48 ± 0.77 seconds. This 
result proves that our proposed method has the promised 
accuracy for lung cancer detection from MRI images that 
even more efficient in time than the usual CNN.  
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