
Vol.12 (2022) No. 1

ISSN: 2088-5334

Performance Evaluation of a Quorum Sensing based Scheme in Multi-

Agent Task Development

Fredy Martínez a,*, Edwar Jacinto a, Holman Montiel a

a Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Carrera 7 No. 40B-53, Bogotá D.C., Colombia

Corresponding author: *fhmartinezs@udistrital.edu.co

Abstract— Robotics is positioned today as a fundamental tool in industrial and commercial development, where machines interact

directly with humans. There is a vast variety of tasks that require autonomous, robust, and high-performance systems. Among these

tasks can benefit from the autonomous integration of multiple elements, known as multi-agent systems. These schemes have interesting

advantages over the single robot solution centered on the high degree of robustness achieved and the lower cost. The control of these

multi-agent systems turns out to be of great complexity and is an active field of robotics research. The motion coordination schemes are

complex and require a certain level of processing and communication. In this paper, a decentralized coordination scheme for low-cost

robot groups based on local interaction is evaluated. The algorithm uses bacterial Quorum Sensing (QS) as a behavioral model, a scheme

under which certain actions are triggered by the agents conditioned to the population density in the region they cover. The algorithm

is tested in navigation tasks for different conditions of the design parameters. Among the parameters evaluated are environment

dependence, system size, and QS threshold. The development times of the tasks were statistically analyzed, and a strong dependence of

the environment on the total time required was found (a well-structured and small environment concerning the system improves the

performance considerably), as well as the design of the robot in terms of QS threshold and sensors.

Keywords—Autonomous systems; behavior-based control; local communication; mapping; motion; movement planning; quorum

sensing; robotics; robustness; swarm.

Manuscript received 16 Apr. 2020; revised 5 Mar. 2021; accepted 23 Apr. 2021. Date of publication 28 Feb. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Industrial environments have benefited from robotic

systems, particularly autonomous ones, due to the reduction

in cost and increase in robustness in the development of

routine tasks and those that involve some level of risk for

human operators [1]. The tasks that can benefit most from a

robotic application are: 1) involve transportation (moving

production raw materials, moving tools in the plant, etc.), 2)
require some kind of search process (identifying wet areas,

hot spots, areas with too much noise pollution, or areas with

some specific operational requirement), 3) require tracking

and identification of animals and pests that may affect product

quality or the performance of the industry [2]. It is common

sense to think that autonomous artificial systems can develop

these tasks since they have well-defined success criteria, do

not require specialized personnel, and are routine within the

production environment. A robotic system can be

programmed to perform these navigation, exploration, and

search tasks and even more complex tasks involving these

activities. However, a single robot performing these activities
has the same problem as serial systems; failure of the robot

means failure to perform the task. This is why if robustness

(and even lower cost) is desired, it is advisable to look for a

solution based on multi-agent systems, which can guarantee

the development of the task despite the partial damage of

some of the elements [3]-[5]. Many low-cost platforms can be

integrated within the same control algorithm for the

development of a task, in principle, it is not required that the

agents are identical, but that they have similar functional

capabilities (similar movement, sensing, and actuation

capabilities); this ensures that each agent can perform the
same task.

The motion control of multi-agent systems is known for its

complexity; it is well known that it is an NP-hard problem [6,

7]. When working with multi-agent or swarm robot systems,

the behavior of the system is defined by the behavior of each

agent, so the goal is to achieve the motion control of each

robot according to the development of the task [8]. This

design problem has two solution approaches. The first

approach is known as odometrical, and it seeks to estimate the

69

position of each robot from its displacement model (derived

from its structure) and the control actions applied [9]. For this

strategy to work, the robot must have a very good design in

terms of assembly, sensors, and response to control actions so

that its mathematical model always reflects the real behavior

of the platform, independently of the topology of the

environment in which it moves. This also implies a

knowledge of the environment that allows the robot to move

correctly along regions for which its behavior is predictable

[10]. In the real world, these conditions are difficult to fulfill,

there are always small errors that make the behavior of the
real robot differ from that expected based on the model, and

this becomes much more evident in a multi-agent system,

without considering the processing and communication

problems that this approach implies. In real environments, it

is a better approach to reactive program responses in robots.

Under this approach, robots are equipped with limited sensors

capable of identifying local information that allows them to

decide action and movement. This prevents sensor failures

(GPS, distance, etc.) from leading to the robot's deviation

from its target, while at the same time reducing manufacturing

costs. Also, industrial environments are highly dynamic, so a
previous mapping of the environment does not yield real-time

information for the robot's actions [11]. When the robot

operates reactively, the important thing is to identify the

neighboring region, and from this information, make

decisions, which depend on whether it finds a plant worker, a

rat, or a material leak [12].

The control scheme we are developing for our multi-agent

systems is of the reactive type [13]. Therefore, we do not

attempt to control the motion of each of our robots explicitly.

Instead, we rely on the higher-level characteristics of the

dynamics assigned to each agent through motion policies to
generate expected behavior concerning the system. Each

agent makes the motion decision individually and

autonomously based on these policies and the information

collected through its sensors [14]. Under this design and

control principle, robots conform with a much simpler and

less expensive hardware and software structure than their

counterparts. They also have a specific design since they are

structured to solve a particular problem (which defines their

structure), and the use of high-performance hardware with

multiple features that are unlikely to be used in the

development of the task is avoided. The decentralized

structure of the system guarantees its robustness, each agent
of the system is dispensable and replaceable by another

element of the system, which also reduces the complexity and

capacity of the communication scheme [15]. The reactive

control scheme allows simple behavioral rules to be defined

from sensing. There are many examples in nature of reactive

systems that have proven to be very successful in keeping

organisms alive despite the conditions of the environment in

which they interact. Birds, ants, and bees are some examples

of multi-agent systems with their own behavioral rules that

allow them to perform their activities successfully, such as

feeding, surviving predators, and moving to new
environments. In this sense, our research group has been

developing for several years a multi-agent interaction scheme

based on local interaction that mimics bacterial behavior

called Quorum Sensing [16, 17]. This scheme has been

successfully used in motion planning applications as well as

in search algorithm optimization processes.

QS is a biological response expressed by bacteria,

conditioned by genetic expressions [18]. It is a behavior

identified since the 1970s that is studied in systemic biology.

Bacteria read proteins deposited by themselves in the

environment, and when the concentration of these proteins is

high, they signal to the whole community that the population

has exceeded a certain population threshold, thus transmitting

to the environment a protein that allows the activation of

certain behavior. This phenomenon was first observed in the
bacteria Vibrio fischeri and Vibrio harveyi due to their

bioluminescent response, in the former it was observed that

bioluminescence only occurred when there was a certain

population density [19, 20]. However, despite more than 40

years of study, the behavioral model has only been introduced

in small computational applications since it had not been

characterized as a common bacterial behavior.

In a simplified context and focused on path planning

applications, QS can be understood as a motion control

strategy that can be used on a finite group of robots to form a

decentralized algorithm supported by reactive responses [21].
These reactive responses are conditioned to the local readings

that each agent in the system can perform, and a collective

behavior condition triggered by the population density

(number of robots in the same region of the environment).

Under this principle, each agent identifies specific

information within the range of its sensors, including one

indicating the region's population density [22]. In the natural

biological model, these readings correspond to molecular

concentration levels (autoinducers), but for the algorithm in

robots can be replaced by something more appropriate to the

application, such as some radiated signal (sound, light, the
intensity of the communication signal, etc.) or information

deposited in the environment (in the style of ant pheromones)

that any other robot in the region can detect. Thanks to this

indirect communication structure, individuals can establish

the population size in their region. If this value exceeds a

certain threshold, activate a specific behavior, which can

indicate the location of specific elements in the environment

(solution of the search problem) [23]. In bacteria, this

behavior is encoded in the DNA of each bacterium; in the case

of a multi-agent system composed of robots this encoding is

translated into behavioral policies established in the code of

each robot.
A system with an operating principle similar to the QS

dynamics used in our algorithm is the voting system of ancient

Greece [24]. At the time of Athenian democracy, a system

was used under which, for offices that did not require

specialized training, citizens were chosen at random to

participate in state positions. A group of candidates based on

interest and historical performance was formed, and using a

roulette wheel, the selection of personnel within this group

was carried out. This scheme is known as Demarchy or

Stococracy and has great advantages over current selection

models called conventional representative democracies,
particularly because external forces do not influence the

selection, and minority groups have a real possibility of

participation. Like the demarchic model, our QS-based

scheme, the search space is initially explored randomly, and

each region has an equal chance of being visited by the group

70

of robots, which guarantees that in finite time the algorithm

will find all possible solutions to the search problem [25].

However, the most important contribution of our model

occurs later, which could be identified with the historical

profile of a candidate, and that is that the best regions attract

more agents. Therefore, when the population of a certain

region reaches a value, it is an indicator to the system that a

solution to the task has been identified. An important

difference between these two models is that a chosen

candidate is removed from the search space, while in our

algorithm, the region remains, and its degree of the solution is
weighted and compared with the other identified regions

relative to the number of agents clustered in the region.

In this paper, we evaluate the performance of our QS-based

reactive navigation strategy for the development of search

tasks in unstructured and unknown environments, operating

on the ARMOS TurtleBot 1 robotic platform [26]-[28]. In the

past, this strategy has been proposed as a solution in

autonomous navigation schemes, particularly in dynamic

environments with direct interaction with humans (service

robotics applications), and it was shown that its dynamics

corresponded to a stochastic process [29, 30]. Thus, it is
possible to affirm that the strategy is capable of solving search

problems in this type of environment in finite time [31]. In

these works, it was shown not only that the time required for

the development of these tasks is finite, but also that there was

a certain relationship between the total time required and the

characteristics of the environment, the system, and the robot

itself. As part of this research, we have conducted a statistical

study with a series of laboratory tests to determine the

dependencies of each of these parameters on the performance

of the algorithm. These laboratory tests have been

complemented with simulations to scale the behavior to large
groups of robots, considering the model of the robotic

platform. We have developed the ARMOS Swarm Simulator

platform as an analysis tool, which contains the dynamic

characteristics of our robot, and allows the programming of

multiple interaction strategies over an infinite number of

environment configurations.

II. MATERIAL AND METHOD

In previous research stages, the QS-based algorithm's

ability to solve simple navigation tasks was demonstrated.

However, during these works, it was impossible to explicitly

establish the relationship between the system parameters and

the expected time to complete the tasks. In this part of the

study, the efforts were focused on establishing through

statistical analysis the variables that affect the system's

response time and how each of these parameters affects this

value. A series of experiments are performed with the

ARMOS TurtleBot 1 robotic platform developing navigation
tasks in controlled environments to establish these

dependencies. The results are used to build a behavioral

model that allows scaling the analysis to a larger number of

agents. Among the parameters previously identified as key in

the motion control scheme are the specific characteristics of

the navigation environment, the size of the swarm population

(system size), the algorithm parameters, and the capacity or

range of the sensors installed on the agents (Fig. 1). The goal

is to specify tasks for our system using our QS-based

algorithm to guarantee the total time required for the

development. This information is fundamental in real

applications where robustness and total time must be

guaranteed.

Fig. 1 Flowchart of the methodological research structure used. The ARMOS

TurtleBot 1 robot is programmed with the QS-based algorithm and is

subjected to behavioral tests in the laboratory. From the results, a dynamic

model is built that allows scaling the behavior to large numbers of robots.

These two tools are used together to evaluate the system parameters, which

are then statistically analyzed to determine their actual effect.

According to the traditional notation of intelligent systems,

each robot corresponds to an agent of our system. In the

specialized literature, there are many movement control

schemes for swarms, and it has already been noted that there

are two general approaches to these schemes: specific

coordination of the location of each of the agents and

probabilistic coordination at the system level. In both cases, a

central control unit is usually used for data processing, leading

to the generation of movement policies. However, as in our

case, it is increasingly common to find decentralized schemes

in which data processing and movement planning processes
are not performed as separate processes.

The architecture of the QS-based algorithm implements the

dynamics of reactive systems. Furthermore, the system model

is approached from the point of view of hybrid systems, and

the specification of the tasks to be solved is performed using

Linear Temporal Logic (LTL). Therefore, in the formulation

of our problem, we defined a set of n autonomous agents, all

identical in capacity and size, within a free space identified as

E, in which the robots can move freely without physical

difficulties, and which is much larger than the projection of

each agent on E (that is, it is possible to accommodate in E
around 100 agents without packaging problems, even though

these 100 agents do not have displacement capacity).

The navigation environment W contains the free space E,

which is a subset along which the agents move. For our type

of robots, robots with a generalized differential model with

displacement capacity on a plane in R2, W C R2 is the closure

of an open set that has an open interior connected. W together

with the O obstacles in its interior conforms to the navigation

environment of the robots. O corresponds to the set of

inaccessible regions O (O C O), such that each of these

regions is closed, and has a connected piecewise-analytic

71

boundary that, because it is contained in W, is finite. By

construction, each O region is independent of each other; that

is, the regions in O are pairwise disjoint, and again, finite in

quantity.

The navigation environment is unknown to the agents; in

fact, dynamic environments are allowed in which the shape of

E and O change over time. They also do not know how many

agents are in the environment. However, these agents have a

limited sensor system that allows them to identify specific

environmental information from which they can evaluate the

quality of their current location (sensors for humidity,
radiation, magnetic field, dust, etc.). They also have sensors

to determine the existence and quantity of other agents in their

neighboring areas. Our agent model is based on our ARMOS

TurtleBot 1 robotic platform, which has nine uniformly

distributed infrared sensors around its vertical axis, each with

a range of 0.2 to 0.8 m (Fig. 2). These distance sensors are

accompanied by an algorithm based on deep neural networks

that allow each robot to identify in real-time with an accuracy

margin of 93% to other agents within the range of the sensors

[26, 27].

Fig. 2 ARMOS TurtleBot 1 robot. This robot is 45 cm wide and 61 cm long.

Around its vertical axis, it has nine infrared distance sensors distributed along

a circular aluminum bar, with 40 degrees of separation one from the other.

These sensors have a range of 0.2 to 0.8 m

Sensors are essential to define the movement of each agent;

through them the agents know the environment, or at least the

region in which they are, the information they collect with the

sensors allows them to know the environment and make

decisions. These observations form an observation space S,

through which the agent builds an information space I.

Therefore, the agent does not have a complete map of the

environment, it performs an information mapping of the form:

 q: E → S (1)

We rely on the high-level dynamic properties of our

strategy to guarantee agents' movement requirements. In our

scheme there is no state feedback, instead each agent performs

information feedback from the construction of an observation

space S derived from the sensor observations made over time.

These observations make up a historical observation of the

form:

 o: [0, t] → S (2)

The interpretation of this information space drives to the

activation of movement policies that at a given moment led to

the activation of specific behaviors in the agent. We say that

the model of the scheme is hybrid because both the agent and

the system behave continuously according to their own

dynamics, but this behavior changes completely when some

specific event is detected (discrete event), for example, a high

population density that leads to the activation of a virulent
behavior, which is characterized by a completely different

dynamic.

The model contemplates two basic behaviors (two-stage

process): Explorer and Virulent. The Explorer agent must

navigate the environment looking for high-quality areas,

while it is affected if it finds an area with a high density of

agents, that is, if it detects this condition, and the number of

agents exceeds a threshold of QS h, then the agent changes its

behavior to Virulent (Fig. 3).

Fig. 3 The system is composed of a group of agents, each one executing a

certain behavior. The proposed algorithm uses two behaviors, a first behavior

leads to specific movement rules coded in a certain part of the code. If the

population density is very high, the QS is activated and the second behavior

is triggered, governed by a different section of code.

The activation of the virulence of an agent is done when

the quorum is met. In the model both the exploring agents and
the virulent agents move from one area of the environment to

another according to the quality, they estimate for it, moving

to areas of higher quality (according to the programmed task

and the capacity of their sensors). This feature is very

important in the algorithm because thanks to it each agent has

the opportunity to find individually the area with the highest

quality (probabilistic exploration of the state space).

These dynamic forms a parallel navigation structure that

guarantees that the agents in exploratory behavior consider

different areas of the environment before choosing one as a

quality area. Consequently, when the quorum is reached, the
agents that detect this population size characteristic begin to

become virulent (Fig. 4).

72

Fig. 4 ARMOS Swarm Simulator. This simulator was developed to analyze

the behavior of swarms formed by the ARMOS TurtleBot 1 robot. The

simulation shows a 15 m x 15 m scaled environment with an obstacle. (a) In

the environment, 20 robots are placed randomly, all with initial Explorer

behavior. (b) After 3 minutes, in the simulated case three robots switch to

Virulent behavior (quorum threshold set to 8)

Any agent can move from one area to another if their

sensors indicate that the new area is of higher quality. Fig. 5

shows the rules through which the interaction between agents

and the environment occurs. As our algorithm only

contemplates two behaviors, X and Z, the system's total
population is constant (no reproduction of individuals). In

some of the tests, the death of agents is caused, but this is

equivalent to assuming damages in the system. To model the

dynamics of an agent moving from one region to another

within E, we assume that E is divided into finite regions (b

regions in total), characterized by the same level of quality.

The change from one region to another is modeled by a

constant weight (μ, λ, k and ρ) defined by the quality

relationship between the two regions. Therefore, there is a

possibility that both explorer and virulent agents change their

behavior according to their sensor readings. Because of this,

the recruitment rate of agents to a region does not depend on

the number of agents (QS does, but this is an additional

feature of the model).

Fig. 5 Flow chart of the dynamics for the proposed QS-based algorithm

A high-quality area will naturally attract explorers. The

agents move into the environment in such a way that they

always try to find better regions. Eventually, the system

reaches equilibrium, causing agents to concentrate on higher-

quality areas, but QS accelerates this convergence since it

encourages agents to stay when there are agents with virulent

behavior in the region. The activation of QS is conditioned to
the agent detecting a number of agents in the region higher

than the threshold of quorum h. In summary, the areas with

higher quality activate the quorum consensus faster.

Three elements characterize our strategy:

 Each agent is autonomous and can identify specific

information in the vicinity of its location in the

environment.

 The solution of the task is verified as an emergent

behavior of the group, by programming the same

behavior policies in each agent of the system.

 The system is infinitely scalable and robust to
variations in environment, population size, and sensing

capacity.

III. RESULTS AND DISCUSSION

We took all necessary precautions to avoid bias in the

results. In this sense, we ensured that parameters such as the

initial position of each agent and its orientation were

randomly defined, both in the tests with the real platform and

73

in the tests carried out by simulation. The tests were also

alternated, the same parameter was never evaluated

consecutively, the testing scheme was designed in such a way

that the researchers did not know what type of parameter was

being evaluated.

To guarantee the complete scanning of the environment,

we program random movements in the robot in response to

the detection of obstacles and W boundaries. In this way, the

robots move according to the conditions of the environment

and impact against obstacles, boundaries of the environment,

and other robots, similar to the Brownian movement. The
Brownian motion of the agents in the environment, therefore,

has a strong random component. This implies that the total

time of development of the task, although it is finite, is

unknown, and must be evaluated statistically since it is a

stochastic process. Consequently, for each possible variant

that affects the task performance (size of the environment,

number of agents, environment quality parameters and QS

threshold) we repeat the tests 100 times, and from the results,

we evaluate average behaviors and dependencies of the results.

The experiments designed for the performance evaluation

were the following:

1) Experiment 1: Performance against changes in the

environment: size. In this test we used a total of 20 robots with

random starting position in an initial environment of 15 m ×

15 m (225 m2, Fig. 1). This size corresponded to the first test

data set, for the second case the area of the environment was

reduced to a size of 14 m × 14 m (196 m2). For the remaining

cases, the total area was further reduced by subtracting one

meter on the vertical axis and one meter on the horizontal axis

to 5 m × 5 m (25 m2). Smaller sizes prevented the movement

of the robots. In total a database of 11 cases was built, each

case with a total of 100 simulations. The quorum threshold
was kept constant at 8. Fig. 6 shows the results of the test with

a violin plot.

2) Experiment 2: Performance against changes in the
environment: quality. We code the quality of each region with

a value between 0 and 1. The highest quality region is the

lower right one, and in the test, we run the algorithm for 20

agents in the 15 m x 15 m environment, with a quorum

threshold of 8, varying the quality of the lower right region

between 0.5 and 0.9, and keeping constant the quality value

of the other regions with values between 0.1 and 0.4. Again,

each case was simulated 100 times. Fig. 7 shows the results

of the test with a violin plot.

3) Experiment 3: Performance against changes in
population size (death of agents). To evaluate the robustness

of the algorithm against changes in population size, we

assume that the robots may suffer damage that disables them

completely, i.e., the robot may die. To evaluate this parameter,

we developed several cases (each with 100 simulations) in

which each one reduces the population size by one. Again, we

start with our 20 agents (first case) and we reduce the

population size until we reach 8 robots (this is because our

quorum threshold is 8, and with a smaller population QS

cannot occur). The other parameters were kept constant. Fig.
8 shows the results of the test with a violin plot.

4) Experiment 4: Performance against changes in the QS
threshold. The QS in our model works as a convergence

accelerator. This has been described in the formulation of the

algorithm. To verify this concept, we varied the threshold

value of quorum h from 5 to 10 in increments of 1. Fig. 9

shows the results of the test with a violin plot.

5) Experiment 5: Performance against changes in sensor
range. Our intelligent distance sensor has a range of 0.2 to 0.8

m. Within this range, the robot can identify both other robots

and obstacles. To evaluate the performance of the algorithm

against variations of this parameter, we adjust the range of the

sensor to produce cases at 0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m,

0.7 m, and 0.8 m. Fig. 10 shows the results of the test with a
violin plot.

The free space E was divided into 16 regions defining four

rows and four columns of equal size (they were distributed

throughout W regardless of obstacles). The regions were

assigned different quality values, but in all cases, the lower
right region remained the highest quality region. In all cases,

the agents were modeled according to our ARMOS TurtleBot

1 robotic platform (Fig. 2). This robot has nine infrared

sensors, color sensors, an inductive sensor, independent

control of its motors (it can rotate on its own axis), one

DragonBoard 410C development board as control unit, and a

router for Wi-Fi communication. The robot is framed in an

area of 45 cm × 61 cm, and has a constant displacement speed

of 2 m/s.

Fig. 6 Experiment 1: Task completion time (vertical) vs. Field size (horizontal)

In all the cases the data was visualized using a violin plot,

which shows the detail of the median values, the probability

density of the data at different values, the interquartile range,

and upper and lower adjacent value. Fig. 6 shows that the time

required for the development of the task increases with the
increase of the navigation area, which directly implies that the

algorithm is robust to these changes. The red line corresponds

to the linear regression of the median values measured in each

environment configuration, calculating the time in minutes

versus the area of the environment measured in m2. The result

of this correlation is also shown in Fig. 6, which demonstrates

that the identified growth is of linear type.

As for the quality of the environment (Fig. 7), we again

observe a fairly linear dependence between the increase in

quality of the region of interest and the reduction in the total

time of execution of the task. Again, the algorithm proves to
be robust to this parameter. Fig. 7 shows similar information

as described above.

74

Fig. 7 Experiment 2: Task completion time (vertical) vs. Quality of the

environment (horizontal)

In Fig. 8, we can see how the reduction in population size

increases the time of development of the task, but the task is

always completed. In this case, the relationship of time to the

parameter is non-linear; it is observed that with approximately
less than 12 robots, the total task development time is almost

tripled. Furthermore, it is observed that there is no major

impact on increasing the number of robots above 14. This

behavior shows that the algorithm is also robust to the

population size of the system.

Fig. 8 Experiment 3: Task completion time (vertical) vs. Population size

(horizontal)

Again, there is a linear relationship between the parameter

and the total time of the task. Fig. 9 shows how the time

decreases as the quorum threshold increases and that at least

within the values evaluated, this relationship is linear,
according to the equation shown in the figure.

Fig. 9 Experiment 4: Task completion time (vertical) vs. QS threshold

(horizontal)

Finally, Fig. 10 shows a relationship of reducing the total

task time by increasing the sensing range and that this

relationship is not linear. This is to be expected since the robot

cannot identify the other robots with very little range until it

is very close to them, making QS difficult. When increasing

the sensor range above 0.4 m, the reduction in time behaves

in an almost linear way. In these cases, the exploration and

QS are more important for the convergence of the algorithm,

and these parameters are not affected by the capacity of the

sensors. According to these results, the algorithm is proven to

be robust to sensor performance changes.

Fig. 10 Experiment 5: Task completion time (vertical) vs. Sensor range

(horizontal)

The results confirm the behavior reported in previous

research while providing formal expressions for establishing

task development times under certain conditions. While it is

not possible to explicitly define the development time, the
curves and their behavior allow us to obtain expressions for

the expected time and population size relationships

concerning the size of the environment and the time required

to develop a task. They also establish behavioral relationships

about sensor capacity and QS threshold, marginally reducing

task time within certain ranges. The performance of our

control scheme against other centralized control approaches

implies the definition of basic points of comparison,

additional to the total time required by the task, such as

robustness against agent failure, percentage of success in the

development of the task, and costs of the solution. In general,
our approach far exceeds the robustness and reliability of

centrally controlled schemes, but such a comparison is outside

the focus of this research.

IV. CONCLUSION

The research group is developing its applications in

hardware, software, and control strategies in service robotics.

Previous work has shown the ability of its reactive algorithm

based on feedback behavior to solve navigation tasks in
dynamic and unknown environments. The major restriction of

the strategy is the impossibility of formally defining the task

development time as a function of the task parameters. This

paper seeks to statistically solve this issue by evaluating the

performance of the algorithm on a multi-agent system

consisting of the ARMOS TurtleBot 1 robotic platform

concerning task design parameters such as the size of the

navigation environment, the configuration of the environment

quality as the basic robot grouping mechanism, the size of the

75

system population, the value of the quorum threshold used,

and the ability of the sensors to detect their neighboring robots.

The objective of the studied tasks is to group the swarm in the

regions of interest of the environment according to the task

and sensors in the robots. For this purpose, we propose using

a navigation algorithm inspired by bacterial interaction that

includes QS-activated behavior. Under this model, the robots

navigate the environment trying to advance towards the

highest quality regions while monitoring the number of robots

in their neighboring region. The algorithm converges by

allowing the robots to cluster in the areas they identify as
being of the highest quality, a process that is accelerated if the

population size exceeds a threshold. We perform simulations

from the dynamic model of our ARMOS TurtleBot 1 robot

platform, hoping that the results can be generalized into

reality for work with this robot. The experiments were

designed considering random distribution and navigation of

the robots, the reason why each case study was supported with

100 simulations. The results showed that the QS-based

motion control algorithm is robust to changing the parameters

considered and that this behavior can be modeled and

predicted. Large environments require larger systems. The
total task time depends linearly on the environment but is

strongly reduced when the population size increases. The

latter relationship is not linear, and as observed, depends on

the size ratio between these two parameters (population size

concerning environment size). Very large populations do not

significantly benefit the strategy, but very small populations

do reduce performance considerably. According to the results,

the ideal ratio for our ARMOS TurtleBot 1 is one robot per 15

m2.

NOMENCLATURE

E Free space

h Threshold of QS

I Information space

n Number of agents in the system

S Observation space

O Obstacle

O Set of all obstacles

W Navigation environment

X Explorers' population
Z Virulent population

Greek letters

μ, λ, k and ρ Constants that weight easy of passage between

regions

ACKNOWLEDGMENT

This work was supported by the Universidad Distrital
Francisco José de Caldas, in part through CIDC, and partly by

the Facultad Tecnológica. Universidad Distrital does not

necessarily endorse the views expressed in this paper. The

authors thank the research group ARMOS for the evaluation

carried out on prototypes of ideas and strategies.

REFERENCES

[1] H. ElGibreen and K. Youcef, “Dynamic task allocation in an uncertain

environment with heterogeneous multi-agents,” Autonomous Robots,

vol. 43, no. 7, pp. 1639–1664, 2019.

[2] S. Krivic and J. Piater, “Pushing corridors for delivering unknown

objects with a mobile robot,” Autonomous Robots, vol. 43, no. 6, pp.

1435–1452, 2019.

[3] F. Berlinger, J. Dusek, M. Gauci, and R. Nagpal, “Robust

maneuverability of a miniature, low-cost underwater robot using

multiple fin actuation,” IEEE Robotics and Automation Letters, vol. 3,

no. 1, pp. 140-147, 2018.

[4] Z. Liu, C. West, B. Lennox, and F. Arvin, "Local bearing estimation

for a swarm of low-cost miniature robots," Sensors (Switzerland), vol.

20, no. 11, pp. 1-23, 2020.

[5] T. Xuehong, L. Huanlao, and L. Haitao, “Robust finite-time consensus

control for multi-agent systems with disturbances and unknown

velocities,” ISA Transactions, vol. 80, no. 1, pp. 73-80, 2018.

[6] Z. Jing, Z. Xiaozhe, Z. Xiaopan, Z. Dongdong, and L. Huanhuan,

“Task Allocation for Multi-Agent Systems Based on Distributed

Many-Objective Evolutionary Algorithm and Greedy Algorithm,”

IEEE Access, vol. 8, no. 1, pp. 19306-19318, 2020.

[7] W. Guang, X. Ming, W. Yiming, Z. Ning, X. Jian, and Q. Tong,

“Using Machine Learning for Determining Network Robustness of

Multi-Agent Systems Under Attacks,” Lecture Notes in Computer

Science, vol. 11013, no. 1, pp. 491-498, 2018.

[8] A. Nazarova, and M. Zhai, “Distributed Solution of Problems in Multi

Agent Robotic Systems,” Studies in Systems, Decision and Control,

vol. 174, no. 1, pp. 107-124, 2019.

[9] Y. Jiang, H. Yedidsion, S. Zhang, G. Sharon, and P. Stone, “Multi-

robot planning with conflicts and synergies,” Autonomous Robots, vol.

43, no. 8, pp. 2011–2032, 2019.

[10] Z. Hashemifar, C. Adhivarahan, A. Balakrishnan, and K. Dantu,

“Augmenting visual slam with wi-fi sensing for indoor applications,”

Autonomous Robots, vol. 43, no. 8, pp. 2245–2260, 2019.

[11] O. Saha, P. Dasgupta, and B. Woosley, “Real-time robot path planning

from simple to complex obstacle patterns via transfer learning of

options,” Autonomous Robots, vol. 43, no. 8, pp. 2071–2093, 2019.

[12] G. Ferrer and A. Sanfeliu, “Anticipative kinodynamic planning: multi-

objective robot navigation in urban and dynamic environments,”

Autonomous Robots, vol. 43, no. 6, pp. 1473–1488, 2019.

[13] A. Rendón, “Evaluation of autonomous navigation strategy based on

reactive behavior for mobile robotic platforms,” Tekhnê, vol. 12, no.

5, pp. 75-82, 2015.

[14] A. Hock and A. Schoelling, “Distributed iterative learning control for

multi-agent systems,” Autonomous Robots, vol. 43, no. 8, pp. 1989–

2010, 2019.

[15] G. Li, D. Onge, C. Pinciroli, A. Gasparri, E. Garone, and G. Beltrame,

“Decentralized progressive shape formation with robot swarms,”

Autonomous Robots, vol. 43, no. 6, pp. 1505–1521, 2019.

[16] T. Rijavec, J. Zrimec, R. Spanning, and A. Lapanje, “Natural microbial

communities can be manipulated by artificially constructed biofilms,”

Advanced Science, vol. 6, no. 22, pp. 1–12, 2019.

[17] M. Schuster, D. Sexton, and B. Hense, “Why quorum sensing controls

private goods,” Frontiers in Microbiology, vol. 8, no. 885, pp. 1–16,

2017.

[18] S. Mukherjee, and B. Bassler, “Bacterial quorum sensing in complex

and dynamically changing environments,” Nature Review

Microbiology, vol. 17, no. 1, pp. 371–382, 2019.

[19] S. McAnulty and S. Spencer, “The role of hemocytes in the hawaiian

bobtail squid, euprymna scolopes: A model organism for studying

beneficial host-microbe interactions,” Frontiers in Microbiology, vol.

7, no. 2013, pp. 1–8, 2017.

[20] L. Tanet, C. Tamburini, C. Baumas, M. Garel, G. Simon, and L.

Casalot, “Bacterial bioluminescence: Light emission in

photobacterium phosphoreum is not under quorum-sensing control,”

Frontiers in Microbiology, vol. 10, no. 365, pp. 1–9, 2019.

[21] N. Tabassum, “Quorum Sensing-A Communication Pathway for

Behavioural Synchronization in Bacteria,” International Journal of

Medical Studies, vol. 4, no. 1, pp. 7-11, 2019.

[22] A. Rasouli, P. Lanillos, G. Cheng, and J. Tsotsos, “Attention-based

active visual search for mobile robots,” Autonomous Robots, vol. 44,

no. 2, pp. 131–146, 2020.

[23] J. Postat and P. Bousso, “Quorum sensing by monocyte-derived

populations,” Frontiers in Immunology, vol. 10, no. 2140, pp. 1–7,

2019.

[24] P. Cartledge, Cultures of Voting in Pre-modern Europe. Taylor &

Francis Group, 1 ed., 2018.

[25] B. Ichter, and M. Pavone, “Robot Motion Planning in Learned Latent

Spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.

2407-2414, 2019.

76

[26] F. Martínez, A. Rendón, and M. Arbulú, “A data-driven path planner

for small autonomous robots using deep regression models,” Lecture

Notes in Computer Science, vol. 10943, no. 1, pp. 596–603, 2018.

[27] F. Martínez, E. Jacinto, and H. Montiel, “Neuronal environmental

pattern recognizer: Optical-by-distance LSTM model for recognition

of navigation patterns in unknown environments,” Communications in

Computer and Information Science, vol. 1071, no. 1, pp. 220–227,

2019.

[28] J. Caley, N. Lawrance, and G. Hollinger, “Deep learning of structured

environments for robot search,” Autonomous Robots, vol. 43, no. 7, pp.

1695–1714, 2019.

[29] M. Castiblanco, and F. Martínez, “Exploración de un modelo

comportamental basado en el Quorum Sensing bacterial para describir

la interacción entre individuos,” Tekhnê, vol. 11, no. 1, pp. 21-26, 2014.

[30] D. Ezzat, S. Amin, H. Shedeed, and M. Tolba, “A New Nano-robots

Control Strategy for Killing Cancer Cells Using Quorum Sensing

Technique and Directed Particle Swarm Optimization Algorithm,”

Advances in Intelligent Systems and Computing, vol. 921, no. 1, pp.

218-226, 2019.

[31] G. Cai, and D. Sofge, “An Urgency Dependent Quorum Sensing

Algorithm for N-SiteSelection in Autonomous Swarms,” 18th

International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2019), pp. 1853-1855, 2019.

77

