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Abstract— Robotics is positioned today as a fundamental tool in industrial and commercial development, where machines interact 

directly with humans. There is a vast variety of tasks that require autonomous, robust, and high-performance systems. Among these 

tasks can benefit from the autonomous integration of multiple elements, known as multi-agent systems. These schemes have interesting 

advantages over the single robot solution centered on the high degree of robustness achieved and the lower cost. The control of these 

multi-agent systems turns out to be of great complexity and is an active field of robotics research. The motion coordination schemes are 

complex and require a certain level of processing and communication. In this paper, a decentralized coordination scheme for low-cost 

robot groups based on local interaction is evaluated. The algorithm uses bacterial Quorum Sensing (QS) as a behavioral model, a scheme 

under which certain actions are triggered by the agents conditioned to the population density in the region they cover. The algorithm 

is tested in navigation tasks for different conditions of the design parameters. Among the parameters evaluated are environment 

dependence, system size, and QS threshold. The development times of the tasks were statistically analyzed, and a strong dependence of 

the environment on the total time required was found (a well-structured and small environment concerning the system improves the 

performance considerably), as well as the design of the robot in terms of QS threshold and sensors.  
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I. INTRODUCTION

Industrial environments have benefited from robotic 

systems, particularly autonomous ones, due to the reduction 

in cost and increase in robustness in the development of 

routine tasks and those that involve some level of risk for 

human operators [1]. The tasks that can benefit most from a 

robotic application are: 1) involve transportation (moving 

production raw materials, moving tools in the plant, etc.), 2) 
require some kind of search process (identifying wet areas, 

hot spots, areas with too much noise pollution, or areas with 

some specific operational requirement), 3) require tracking 

and identification of animals and pests that may affect product 

quality or the performance of the industry [2]. It is common 

sense to think that autonomous artificial systems can develop 

these tasks since they have well-defined success criteria, do 

not require specialized personnel, and are routine within the 

production environment. A robotic system can be 

programmed to perform these navigation, exploration, and 

search tasks and even more complex tasks involving these 

activities. However, a single robot performing these activities 
has the same problem as serial systems; failure of the robot 

means failure to perform the task. This is why if robustness 

(and even lower cost) is desired, it is advisable to look for a 

solution based on multi-agent systems, which can guarantee 

the development of the task despite the partial damage of 

some of the elements [3]-[5]. Many low-cost platforms can be 

integrated within the same control algorithm for the 

development of a task, in principle, it is not required that the 

agents are identical, but that they have similar functional 

capabilities (similar movement, sensing, and actuation 

capabilities); this ensures that each agent can perform the 
same task.  

The motion control of multi-agent systems is known for its 

complexity; it is well known that it is an NP-hard problem [6, 

7]. When working with multi-agent or swarm robot systems, 

the behavior of the system is defined by the behavior of each 

agent, so the goal is to achieve the motion control of each 

robot according to the development of the task [8]. This 

design problem has two solution approaches. The first 

approach is known as odometrical, and it seeks to estimate the 
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position of each robot from its displacement model (derived 

from its structure) and the control actions applied [9]. For this 

strategy to work, the robot must have a very good design in 

terms of assembly, sensors, and response to control actions so 

that its mathematical model always reflects the real behavior 

of the platform, independently of the topology of the 

environment in which it moves. This also implies a 

knowledge of the environment that allows the robot to move 

correctly along regions for which its behavior is predictable 

[10]. In the real world, these conditions are difficult to fulfill, 

there are always small errors that make the behavior of the 
real robot differ from that expected based on the model, and 

this becomes much more evident in a multi-agent system, 

without considering the processing and communication 

problems that this approach implies. In real environments, it 

is a better approach to reactive program responses in robots. 

Under this approach, robots are equipped with limited sensors 

capable of identifying local information that allows them to 

decide action and movement. This prevents sensor failures 

(GPS, distance, etc.) from leading to the robot's deviation 

from its target, while at the same time reducing manufacturing 

costs. Also, industrial environments are highly dynamic, so a 
previous mapping of the environment does not yield real-time 

information for the robot's actions [11]. When the robot 

operates reactively, the important thing is to identify the 

neighboring region, and from this information, make 

decisions, which depend on whether it finds a plant worker, a 

rat, or a material leak [12].  

The control scheme we are developing for our multi-agent 

systems is of the reactive type [13]. Therefore, we do not 

attempt to control the motion of each of our robots explicitly. 

Instead, we rely on the higher-level characteristics of the 

dynamics assigned to each agent through motion policies to 
generate expected behavior concerning the system. Each 

agent makes the motion decision individually and 

autonomously based on these policies and the information 

collected through its sensors [14]. Under this design and 

control principle, robots conform with a much simpler and 

less expensive hardware and software structure than their 

counterparts. They also have a specific design since they are 

structured to solve a particular problem (which defines their 

structure), and the use of high-performance hardware with 

multiple features that are unlikely to be used in the 

development of the task is avoided. The decentralized 

structure of the system guarantees its robustness, each agent 
of the system is dispensable and replaceable by another 

element of the system, which also reduces the complexity and 

capacity of the communication scheme [15]. The reactive 

control scheme allows simple behavioral rules to be defined 

from sensing. There are many examples in nature of reactive 

systems that have proven to be very successful in keeping 

organisms alive despite the conditions of the environment in 

which they interact. Birds, ants, and bees are some examples 

of multi-agent systems with their own behavioral rules that 

allow them to perform their activities successfully, such as 

feeding, surviving predators, and moving to new 
environments. In this sense, our research group has been 

developing for several years a multi-agent interaction scheme 

based on local interaction that mimics bacterial behavior 

called Quorum Sensing [16, 17]. This scheme has been 

successfully used in motion planning applications as well as 

in search algorithm optimization processes.  

QS is a biological response expressed by bacteria, 

conditioned by genetic expressions [18]. It is a behavior 

identified since the 1970s that is studied in systemic biology. 

Bacteria read proteins deposited by themselves in the 

environment, and when the concentration of these proteins is 

high, they signal to the whole community that the population 

has exceeded a certain population threshold, thus transmitting 

to the environment a protein that allows the activation of 

certain behavior. This phenomenon was first observed in the 
bacteria Vibrio fischeri and Vibrio harveyi due to their 

bioluminescent response, in the former it was observed that 

bioluminescence only occurred when there was a certain 

population density [19, 20]. However, despite more than 40 

years of study, the behavioral model has only been introduced 

in small computational applications since it had not been 

characterized as a common bacterial behavior.  

In a simplified context and focused on path planning 

applications, QS can be understood as a motion control 

strategy that can be used on a finite group of robots to form a 

decentralized algorithm supported by reactive responses [21]. 
These reactive responses are conditioned to the local readings 

that each agent in the system can perform, and a collective 

behavior condition triggered by the population density 

(number of robots in the same region of the environment). 

Under this principle, each agent identifies specific 

information within the range of its sensors, including one 

indicating the region's population density [22]. In the natural 

biological model, these readings correspond to molecular 

concentration levels (autoinducers), but for the algorithm in 

robots can be replaced by something more appropriate to the 

application, such as some radiated signal (sound, light, the 
intensity of the communication signal, etc.) or information 

deposited in the environment (in the style of ant pheromones) 

that any other robot in the region can detect. Thanks to this 

indirect communication structure, individuals can establish 

the population size in their region. If this value exceeds a 

certain threshold, activate a specific behavior, which can 

indicate the location of specific elements in the environment 

(solution of the search problem) [23]. In bacteria, this 

behavior is encoded in the DNA of each bacterium; in the case 

of a multi-agent system composed of robots this encoding is 

translated into behavioral policies established in the code of 

each robot.  
A system with an operating principle similar to the QS 

dynamics used in our algorithm is the voting system of ancient 

Greece [24]. At the time of Athenian democracy, a system 

was used under which, for offices that did not require 

specialized training, citizens were chosen at random to 

participate in state positions. A group of candidates based on 

interest and historical performance was formed, and using a 

roulette wheel, the selection of personnel within this group 

was carried out. This scheme is known as Demarchy or 

Stococracy and has great advantages over current selection 

models called conventional representative democracies, 
particularly because external forces do not influence the 

selection, and minority groups have a real possibility of 

participation. Like the demarchic model, our QS-based 

scheme, the search space is initially explored randomly, and 

each region has an equal chance of being visited by the group 
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of robots, which guarantees that in finite time the algorithm 

will find all possible solutions to the search problem [25]. 

However, the most important contribution of our model 

occurs later, which could be identified with the historical 

profile of a candidate, and that is that the best regions attract 

more agents. Therefore, when the population of a certain 

region reaches a value, it is an indicator to the system that a 

solution to the task has been identified. An important 

difference between these two models is that a chosen 

candidate is removed from the search space, while in our 

algorithm, the region remains, and its degree of the solution is 
weighted and compared with the other identified regions 

relative to the number of agents clustered in the region.  

In this paper, we evaluate the performance of our QS-based 

reactive navigation strategy for the development of search 

tasks in unstructured and unknown environments, operating 

on the ARMOS TurtleBot 1 robotic platform [26]-[28]. In the 

past, this strategy has been proposed as a solution in 

autonomous navigation schemes, particularly in dynamic 

environments with direct interaction with humans (service 

robotics applications), and it was shown that its dynamics 

corresponded to a stochastic process [29, 30]. Thus, it is 
possible to affirm that the strategy is capable of solving search 

problems in this type of environment in finite time [31]. In 

these works, it was shown not only that the time required for 

the development of these tasks is finite, but also that there was 

a certain relationship between the total time required and the 

characteristics of the environment, the system, and the robot 

itself. As part of this research, we have conducted a statistical 

study with a series of laboratory tests to determine the 

dependencies of each of these parameters on the performance 

of the algorithm. These laboratory tests have been 

complemented with simulations to scale the behavior to large 
groups of robots, considering the model of the robotic 

platform. We have developed the ARMOS Swarm Simulator 

platform as an analysis tool, which contains the dynamic 

characteristics of our robot, and allows the programming of 

multiple interaction strategies over an infinite number of 

environment configurations. 

II. MATERIAL AND METHOD 

In previous research stages, the QS-based algorithm's 

ability to solve simple navigation tasks was demonstrated. 

However, during these works, it was impossible to explicitly 

establish the relationship between the system parameters and 

the expected time to complete the tasks. In this part of the 

study, the efforts were focused on establishing through 

statistical analysis the variables that affect the system's 

response time and how each of these parameters affects this 

value. A series of experiments are performed with the 

ARMOS TurtleBot 1 robotic platform developing navigation 
tasks in controlled environments to establish these 

dependencies. The results are used to build a behavioral 

model that allows scaling the analysis to a larger number of 

agents. Among the parameters previously identified as key in 

the motion control scheme are the specific characteristics of 

the navigation environment, the size of the swarm population 

(system size), the algorithm parameters, and the capacity or 

range of the sensors installed on the agents (Fig. 1). The goal 

is to specify tasks for our system using our QS-based 

algorithm to guarantee the total time required for the 

development. This information is fundamental in real 

applications where robustness and total time must be 

guaranteed. 

 

 
Fig. 1 Flowchart of the methodological research structure used. The ARMOS 

TurtleBot 1 robot is programmed with the QS-based algorithm and is 

subjected to behavioral tests in the laboratory. From the results, a dynamic 

model is built that allows scaling the behavior to large numbers of robots. 

These two tools are used together to evaluate the system parameters, which 

are then statistically analyzed to determine their actual effect. 

 

According to the traditional notation of intelligent systems, 

each robot corresponds to an agent of our system. In the 

specialized literature, there are many movement control 

schemes for swarms, and it has already been noted that there 

are two general approaches to these schemes: specific 

coordination of the location of each of the agents and 

probabilistic coordination at the system level. In both cases, a 

central control unit is usually used for data processing, leading 

to the generation of movement policies. However, as in our 

case, it is increasingly common to find decentralized schemes 

in which data processing and movement planning processes 
are not performed as separate processes. 

The architecture of the QS-based algorithm implements the 

dynamics of reactive systems. Furthermore, the system model 

is approached from the point of view of hybrid systems, and 

the specification of the tasks to be solved is performed using 

Linear Temporal Logic (LTL). Therefore, in the formulation 

of our problem, we defined a set of n autonomous agents, all 

identical in capacity and size, within a free space identified as 

E, in which the robots can move freely without physical 

difficulties, and which is much larger than the projection of 

each agent on E (that is, it is possible to accommodate in E 
around 100 agents without packaging problems, even though 

these 100 agents do not have displacement capacity). 

The navigation environment W contains the free space E, 

which is a subset along which the agents move. For our type 

of robots, robots with a generalized differential model with 

displacement capacity on a plane in R2, W C R2 is the closure 

of an open set that has an open interior connected. W together 

with the O obstacles in its interior conforms to the navigation 

environment of the robots. O corresponds to the set of 

inaccessible regions O (O C O), such that each of these 

regions is closed, and has a connected piecewise-analytic 
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boundary that, because it is contained in W, is finite. By 

construction, each O region is independent of each other; that 

is, the regions in O are pairwise disjoint, and again, finite in 

quantity. 

The navigation environment is unknown to the agents; in 

fact, dynamic environments are allowed in which the shape of 

E and O change over time. They also do not know how many 

agents are in the environment. However, these agents have a 

limited sensor system that allows them to identify specific 

environmental information from which they can evaluate the 

quality of their current location (sensors for humidity, 
radiation, magnetic field, dust, etc.). They also have sensors 

to determine the existence and quantity of other agents in their 

neighboring areas. Our agent model is based on our ARMOS 

TurtleBot 1 robotic platform, which has nine uniformly 

distributed infrared sensors around its vertical axis, each with 

a range of 0.2 to 0.8 m (Fig. 2). These distance sensors are 

accompanied by an algorithm based on deep neural networks 

that allow each robot to identify in real-time with an accuracy 

margin of 93% to other agents within the range of the sensors 

[26, 27]. 

 

 
Fig. 2 ARMOS TurtleBot 1 robot. This robot is 45 cm wide and 61 cm long. 

Around its vertical axis, it has nine infrared distance sensors distributed along 

a circular aluminum bar, with 40 degrees of separation one from the other. 

These sensors have a range of 0.2 to 0.8 m 

 

Sensors are essential to define the movement of each agent; 

through them the agents know the environment, or at least the 

region in which they are, the information they collect with the 

sensors allows them to know the environment and make 

decisions. These observations form an observation space S, 

through which the agent builds an information space I. 

Therefore, the agent does not have a complete map of the 

environment, it performs an information mapping of the form: 

 q: E → S  (1) 

We rely on the high-level dynamic properties of our 

strategy to guarantee agents' movement requirements. In our 

scheme there is no state feedback, instead each agent performs 

information feedback from the construction of an observation 

space S derived from the sensor observations made over time. 

These observations make up a historical observation of the 

form: 

 o: [0, t] → S  (2) 

The interpretation of this information space drives to the 

activation of movement policies that at a given moment led to 

the activation of specific behaviors in the agent. We say that 

the model of the scheme is hybrid because both the agent and 

the system behave continuously according to their own 

dynamics, but this behavior changes completely when some 

specific event is detected (discrete event), for example, a high 

population density that leads to the activation of a virulent 
behavior, which is characterized by a completely different 

dynamic. 

The model contemplates two basic behaviors (two-stage 

process): Explorer and Virulent. The Explorer agent must 

navigate the environment looking for high-quality areas, 

while it is affected if it finds an area with a high density of 

agents, that is, if it detects this condition, and the number of 

agents exceeds a threshold of QS h, then the agent changes its 

behavior to Virulent (Fig. 3). 

 

 
Fig. 3 The system is composed of a group of agents, each one executing a 

certain behavior. The proposed algorithm uses two behaviors, a first behavior 

leads to specific movement rules coded in a certain part of the code. If the 

population density is very high, the QS is activated and the second behavior 

is triggered, governed by a different section of code. 

 

The activation of the virulence of an agent is done when 

the quorum is met. In the model both the exploring agents and 
the virulent agents move from one area of the environment to 

another according to the quality, they estimate for it, moving 

to areas of higher quality (according to the programmed task 

and the capacity of their sensors). This feature is very 

important in the algorithm because thanks to it each agent has 

the opportunity to find individually the area with the highest 

quality (probabilistic exploration of the state space). 

These dynamic forms a parallel navigation structure that 

guarantees that the agents in exploratory behavior consider 

different areas of the environment before choosing one as a 

quality area. Consequently, when the quorum is reached, the 
agents that detect this population size characteristic begin to 

become virulent (Fig. 4). 
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Fig. 4 ARMOS Swarm Simulator. This simulator was developed to analyze 

the behavior of swarms formed by the ARMOS TurtleBot 1 robot. The 

simulation shows a 15 m x 15 m scaled environment with an obstacle. (a) In 

the environment, 20 robots are placed randomly, all with initial Explorer 

behavior. (b) After 3 minutes, in the simulated case three robots switch to 

Virulent behavior (quorum threshold set to 8) 

 

Any agent can move from one area to another if their 

sensors indicate that the new area is of higher quality. Fig. 5 

shows the rules through which the interaction between agents 

and the environment occurs. As our algorithm only 

contemplates two behaviors, X and Z, the system's total 
population is constant (no reproduction of individuals). In 

some of the tests, the death of agents is caused, but this is 

equivalent to assuming damages in the system. To model the 

dynamics of an agent moving from one region to another 

within E, we assume that E is divided into finite regions (b 

regions in total), characterized by the same level of quality. 

The change from one region to another is modeled by a 

constant weight (μ, λ, k and ρ) defined by the quality 

relationship between the two regions. Therefore, there is a 

possibility that both explorer and virulent agents change their 

behavior according to their sensor readings. Because of this, 

the recruitment rate of agents to a region does not depend on 

the number of agents (QS does, but this is an additional 

feature of the model). 

 

 
Fig. 5 Flow chart of the dynamics for the proposed QS-based algorithm 

 

A high-quality area will naturally attract explorers. The 

agents move into the environment in such a way that they 

always try to find better regions. Eventually, the system 

reaches equilibrium, causing agents to concentrate on higher-

quality areas, but QS accelerates this convergence since it 

encourages agents to stay when there are agents with virulent 

behavior in the region. The activation of QS is conditioned to 
the agent detecting a number of agents in the region higher 

than the threshold of quorum h. In summary, the areas with 

higher quality activate the quorum consensus faster. 

Three elements characterize our strategy: 

 Each agent is autonomous and can identify specific 

information in the vicinity of its location in the 

environment. 

 The solution of the task is verified as an emergent 

behavior of the group, by programming the same 

behavior policies in each agent of the system. 

 The system is infinitely scalable and robust to 
variations in environment, population size, and sensing 

capacity. 

III. RESULTS AND DISCUSSION 

We took all necessary precautions to avoid bias in the 

results. In this sense, we ensured that parameters such as the 

initial position of each agent and its orientation were 

randomly defined, both in the tests with the real platform and 
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in the tests carried out by simulation. The tests were also 

alternated, the same parameter was never evaluated 

consecutively, the testing scheme was designed in such a way 

that the researchers did not know what type of parameter was 

being evaluated. 

To guarantee the complete scanning of the environment, 

we program random movements in the robot in response to 

the detection of obstacles and W boundaries. In this way, the 

robots move according to the conditions of the environment 

and impact against obstacles, boundaries of the environment, 

and other robots, similar to the Brownian movement. The 
Brownian motion of the agents in the environment, therefore, 

has a strong random component. This implies that the total 

time of development of the task, although it is finite, is 

unknown, and must be evaluated statistically since it is a 

stochastic process. Consequently, for each possible variant 

that affects the task performance (size of the environment, 

number of agents, environment quality parameters and QS 

threshold) we repeat the tests 100 times, and from the results, 

we evaluate average behaviors and dependencies of the results. 

The experiments designed for the performance evaluation 

were the following: 

1) Experiment 1: Performance against changes in the 

environment: size. In this test we used a total of 20 robots with 

random starting position in an initial environment of 15 m × 

15 m (225 m2, Fig. 1). This size corresponded to the first test 

data set, for the second case the area of the environment was 

reduced to a size of 14 m × 14 m (196 m2). For the remaining 

cases, the total area was further reduced by subtracting one 

meter on the vertical axis and one meter on the horizontal axis 

to 5 m × 5 m (25 m2). Smaller sizes prevented the movement 

of the robots. In total a database of 11 cases was built, each 

case with a total of 100 simulations. The quorum threshold 
was kept constant at 8. Fig. 6 shows the results of the test with 

a violin plot. 

2) Experiment 2: Performance against changes in the 
environment: quality. We code the quality of each region with 

a value between 0 and 1. The highest quality region is the 

lower right one, and in the test, we run the algorithm for 20 

agents in the 15 m x 15 m environment, with a quorum 

threshold of 8, varying the quality of the lower right region 

between 0.5 and 0.9, and keeping constant the quality value 

of the other regions with values between 0.1 and 0.4. Again, 

each case was simulated 100 times. Fig. 7 shows the results 

of the test with a violin plot. 

3) Experiment 3: Performance against changes in 
population size (death of agents). To evaluate the robustness 

of the algorithm against changes in population size, we 

assume that the robots may suffer damage that disables them 

completely, i.e., the robot may die. To evaluate this parameter, 

we developed several cases (each with 100 simulations) in 

which each one reduces the population size by one. Again, we 

start with our 20 agents (first case) and we reduce the 

population size until we reach 8 robots (this is because our 

quorum threshold is 8, and with a smaller population QS 

cannot occur). The other parameters were kept constant. Fig. 
8 shows the results of the test with a violin plot.  

4) Experiment 4: Performance against changes in the QS 
threshold. The QS in our model works as a convergence 

accelerator. This has been described in the formulation of the 

algorithm. To verify this concept, we varied the threshold 

value of quorum h from 5 to 10 in increments of 1. Fig. 9 

shows the results of the test with a violin plot. 

5) Experiment 5: Performance against changes in sensor 
range. Our intelligent distance sensor has a range of 0.2 to 0.8 

m. Within this range, the robot can identify both other robots 

and obstacles. To evaluate the performance of the algorithm 

against variations of this parameter, we adjust the range of the 

sensor to produce cases at 0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m, 

0.7 m, and 0.8 m. Fig. 10 shows the results of the test with a 
violin plot. 

The free space E was divided into 16 regions defining four 

rows and four columns of equal size (they were distributed 

throughout W regardless of obstacles). The regions were 

assigned different quality values, but in all cases, the lower 
right region remained the highest quality region. In all cases, 

the agents were modeled according to our ARMOS TurtleBot 

1 robotic platform (Fig. 2). This robot has nine infrared 

sensors, color sensors, an inductive sensor, independent 

control of its motors (it can rotate on its own axis), one 

DragonBoard 410C development board as control unit, and a 

router for Wi-Fi communication. The robot is framed in an 

area of 45 cm × 61 cm, and has a constant displacement speed 

of 2 m/s. 

 

 
Fig. 6 Experiment 1: Task completion time (vertical) vs. Field size (horizontal) 

 

In all the cases the data was visualized using a violin plot, 

which shows the detail of the median values, the probability 

density of the data at different values, the interquartile range, 

and upper and lower adjacent value. Fig. 6 shows that the time 

required for the development of the task increases with the 
increase of the navigation area, which directly implies that the 

algorithm is robust to these changes. The red line corresponds 

to the linear regression of the median values measured in each 

environment configuration, calculating the time in minutes 

versus the area of the environment measured in m2. The result 

of this correlation is also shown in Fig. 6, which demonstrates 

that the identified growth is of linear type. 

As for the quality of the environment (Fig. 7), we again 

observe a fairly linear dependence between the increase in 

quality of the region of interest and the reduction in the total 

time of execution of the task. Again, the algorithm proves to 
be robust to this parameter. Fig. 7 shows similar information 

as described above. 
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Fig. 7 Experiment 2: Task completion time (vertical) vs. Quality of the 

environment (horizontal) 

 

In Fig. 8, we can see how the reduction in population size 

increases the time of development of the task, but the task is 

always completed. In this case, the relationship of time to the 

parameter is non-linear; it is observed that with approximately 
less than 12 robots, the total task development time is almost 

tripled. Furthermore, it is observed that there is no major 

impact on increasing the number of robots above 14. This 

behavior shows that the algorithm is also robust to the 

population size of the system. 
 

 
Fig. 8 Experiment 3: Task completion time (vertical) vs. Population size 

(horizontal) 

 

Again, there is a linear relationship between the parameter 

and the total time of the task. Fig. 9 shows how the time 

decreases as the quorum threshold increases and that at least 

within the values evaluated, this relationship is linear, 
according to the equation shown in the figure. 

 

 
Fig. 9 Experiment 4: Task completion time (vertical) vs. QS threshold 

(horizontal) 

Finally, Fig. 10 shows a relationship of reducing the total 

task time by increasing the sensing range and that this 

relationship is not linear. This is to be expected since the robot 

cannot identify the other robots with very little range until it 

is very close to them, making QS difficult. When increasing 

the sensor range above 0.4 m, the reduction in time behaves 

in an almost linear way. In these cases, the exploration and 

QS are more important for the convergence of the algorithm, 

and these parameters are not affected by the capacity of the 

sensors. According to these results, the algorithm is proven to 

be robust to sensor performance changes. 
 

 
Fig. 10 Experiment 5: Task completion time (vertical) vs. Sensor range 

(horizontal) 

 

The results confirm the behavior reported in previous 

research while providing formal expressions for establishing 

task development times under certain conditions. While it is 

not possible to explicitly define the development time, the 
curves and their behavior allow us to obtain expressions for 

the expected time and population size relationships 

concerning the size of the environment and the time required 

to develop a task. They also establish behavioral relationships 

about sensor capacity and QS threshold, marginally reducing 

task time within certain ranges. The performance of our 

control scheme against other centralized control approaches 

implies the definition of basic points of comparison, 

additional to the total time required by the task, such as 

robustness against agent failure, percentage of success in the 

development of the task, and costs of the solution. In general, 
our approach far exceeds the robustness and reliability of 

centrally controlled schemes, but such a comparison is outside 

the focus of this research. 

IV. CONCLUSION 

The research group is developing its applications in 

hardware, software, and control strategies in service robotics. 

Previous work has shown the ability of its reactive algorithm 

based on feedback behavior to solve navigation tasks in 
dynamic and unknown environments. The major restriction of 

the strategy is the impossibility of formally defining the task 

development time as a function of the task parameters. This 

paper seeks to statistically solve this issue by evaluating the 

performance of the algorithm on a multi-agent system 

consisting of the ARMOS TurtleBot 1 robotic platform 

concerning task design parameters such as the size of the 

navigation environment, the configuration of the environment 

quality as the basic robot grouping mechanism, the size of the 

75



system population, the value of the quorum threshold used, 

and the ability of the sensors to detect their neighboring robots. 

The objective of the studied tasks is to group the swarm in the 

regions of interest of the environment according to the task 

and sensors in the robots. For this purpose, we propose using 

a navigation algorithm inspired by bacterial interaction that 

includes QS-activated behavior. Under this model, the robots 

navigate the environment trying to advance towards the 

highest quality regions while monitoring the number of robots 

in their neighboring region. The algorithm converges by 

allowing the robots to cluster in the areas they identify as 
being of the highest quality, a process that is accelerated if the 

population size exceeds a threshold. We perform simulations 

from the dynamic model of our ARMOS TurtleBot 1 robot 

platform, hoping that the results can be generalized into 

reality for work with this robot. The experiments were 

designed considering random distribution and navigation of 

the robots, the reason why each case study was supported with 

100 simulations. The results showed that the QS-based 

motion control algorithm is robust to changing the parameters 

considered and that this behavior can be modeled and 

predicted. Large environments require larger systems. The 
total task time depends linearly on the environment but is 

strongly reduced when the population size increases. The 

latter relationship is not linear, and as observed, depends on 

the size ratio between these two parameters (population size 

concerning environment size). Very large populations do not 

significantly benefit the strategy, but very small populations 

do reduce performance considerably. According to the results, 

the ideal ratio for our ARMOS TurtleBot 1 is one robot per 15 

m2. 

NOMENCLATURE 

E Free space  

h Threshold of QS  

I Information space  

n Number of agents in the system  

S Observation space  

O Obstacle  

O Set of all obstacles  

W Navigation environment  

X Explorers' population  
Z Virulent population  

 

Greek letters 

μ, λ, k and ρ        Constants that weight easy of passage between 

regions 
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