
Vol.12 (2022) No. 3

ISSN: 2088-5334

Face Recognition Application Based on Convolutional Neural

Network for Searching Someone’s Photo on External Storage

I Putu Arya Dharmaadi a,*, Deden Witarsyah b, I Putu Agung Bayupati a, Gusti Made Arya Sasmita a

a Department of Information Technology, Udayana University, Badung, Bali, 80361, Indonesia
b Department of Information System, Faculty of Industrial Engineering, Telkom University, Bandung, 40257, Indonesia

Corresponding author: *aryadharmaadi@unud.ac.id

Abstract—Digital photos are often defined as personal archives collected long ago and are stored on a large enough storage media such

as an external hard disk or flash disk. Problems arise when someone wants to find photos of themselves or others in tons of photo

collections. Searching manually, such as opening a photo file or folder one by one, will certainly be very troublesome. Based on these

problems, this study designed an application for searching certain photos based on the similarity of the inserted face photo. This

application is built for computer or laptop devices, which was developed by using the Python programming language and Dlib module

that applied the face recognition method through the combination of Convolutional Neural Network (CNN), FaceNet Embedding, and

Triplet Loss for matching faces. The recognition scheme starts from face detection, face alignment, face encoding, and face classification

stage. Our application is very handy to run in looking for particular face images on external storage compared to prior studies. We

have done experimental research, demonstrating that the application can find almost all image files the user is looking for. In addition

to the result in the form of an application, this study contributes to exploring the performance of the Dlib module, in terms of precision

and recall rate, which could not recognize non-frontal face images well. We encourage other researchers to address this limitation in

further studies.

Keywords— Photo searching; convolutional neural network; face recognition; python; dlib.

Manuscript received 13 Apr. 2020; revised 7 Apr. 2021; accepted 20 May 2021. Date of publication 30 Jun. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Nowadays, the development of digital technology is

growing rapidly so that digital data can be generated and
stored, including digital photos. Digital photos technology has

increased rapidly in the form of camera technologies that have

sprung up, such as a pocket, DSLR, smartphone, and laptop

cameras [1]. Technology makes it easy for everyone to take

photos of every important moment with others [2]. Because

the number and size are quite large, all digital photos are

generally moved and stored on external storage media such as

hard disk or flash disk.

Problems arise when someone wants to find photos of

themselves or others’ photos in a ton of photo collections [3].

Searching manually, such as opening a photo file or folder one
by one, will certainly be very troublesome. Generally, file

management systems or photo management applications on a

computer or personal computer (PC) only provide limited

search features, such as searching by name, size, file type, and

date for the file creation [4]. Finding certain photos with this

feature doesn't help much because photo file names are

usually sequential. In this way, we need an application that

can search for certain photos based on the inserted face photo.

Some recent smartphones already have similar applications

that can group photos based on the faces detected by the

application. For example, an iPhone type smartphone has a
'Photos' application that can be used to search for facial

photos. However, on a laptop or PC, this type of application

is very rarely found. On the other hand, the inability of

smartphones in reading hard disks or flash drives where

millions of digital photos are usually long stored makes these

photos have to be transferred first to a smartphone's internal

memory to be read. The process of moving photos is certainly

very annoying and time-consuming.

Based on these problems, we designed a photo search

application that runs on a laptop or a PC device with the

ability to read files on an internal hard disk or an external hard

disk, or a flash drive. In order to do particular tasks such as
understanding images and finding the right people's faces, the

application needs a special method or algorithm that can

1222

analyze pictures, distinguish a face from other objects, and

recognize the faces that are sought. After conducted a

literature review, we found that the face recognition method

is the technique that is being researched by researchers for

detecting the face and classifying it based on its feature

extraction [5], [6].

The face recognition method is not completely new, but it

has been around for a long time, around 1966 [7]. However,

currently, this technology is growing rapidly because it is

supported by drastically increasing computer capabilities. By

using face recognition technology, we can verify (one-to-one
matching) someone's face or identify (one-to-many matching)

unknown faces on an image [8]. Three main modules make

the face recognition system work properly. They are: face

detector module for localizing faces in images; facial

landmark detector module for aligning the faces to normalized

canonical coordinate; and face recognition module for

extracting face features and matching it [9]. Based on the

review result of face recognition methods and techniques

presented by Lal et al. [10], we found that the neural network

method later combined with multi-stage image convolution

layers is an effective facial recognition technique [11].
Therefore, in this research, we built an application applying

a face recognition method named FaceNet Embedding

approach that utilizes the concept of convolutional neural

network and the mathematical formulation of triplet loss. This

approach has been widely used by global technology

companies such as Google and Facebook because of its

excellent accuracy, close to 98% [12]. By utilizing this

method, the built applications can provide accurate results

with fast processing time.

Considering its vital role in the system being built, a study

on face recognition needs to be discussed more deeply,
especially on how it works. Face recognition is one branch of

knowledge in computer vision that provides knowledge to

computers to distinguish someone's face from others [13]. For

decades ago, researchers have been trying to develop various

techniques and tools to make computers able to recognize a

person's face automatically. Based on the research results

from Beham and Roomi [14], there are broadly three main

approaches in building face recognition systems, namely

appearance-based, feature-based, and soft computing-based.

Among those approaches, the soft-computing approach, on

artificial neural network concept, is the most popular

approach widely used and developed by academics due to its
impressive performance.

An artificial neural network is a technique that adapts the

human brain to work and learn [15]. In order to give better

results on image processing, the model is combined with

multi-stage image convolution layers so that the combination

concept is called a convolutional neural network (CNN) [16].

Besides reducing the number of input parameters into the

neural network, the application of convolution series aims to

extract the main features of an image [17]. As a result, CNN

can learn the best parameters or weights from large datasets

of images during the training stage to produce the expected
results [18].

The workflow of the face recognition process based on

CNN is described in figure 1. In the first step, the image will

be analyzed using the histogram of oriented gradients  (HOG)

method to determine the face [19]. This step produces the

pixel coordinates of a bounding box for each face. Second,

every face found is explored further to determine the specific

points or landmarks of the face, such as nose, eyes, mouth, etc.

[20]. Based on the face landmarks, we crop and align the face

so that the mouth and eyes are centered well in the face photo

[21]. The output of the face alignment stage is the cropped

face image with a fixed size, i.e., 96x96. The next step, face

encoding, aims to extract the face to be a compact and

discriminative feature vector called an embedding value [22].

The face encoding step utilizes CNN and applies FaceNet

embedding and triplet loss function during the training so that
the faces of the same person generate a similar embedding

value, and vice versa [23]. In the last step, using a

classification algorithm such as a support vector machine

(SVM) to process the embedding value, we can distinguish

someone’s face from the others’ [24].

Fig. 1 Face recognition workflow

To produce the CNN model with the best parameters, we
had to train it with very large datasets of face images that will

be done in dozens of hours in a supercomputer. Luckily, some

researchers had conducted the training process and shared

their best models to compare the models’ performance. One

of the popular models is the Dlib library, written in C++ and

Python language, developed by [25]. Using the library, we can

easily implement the face recognition workflow without

creating and training the model from scratch because Dlib has

provided it. This library utilizes the ResNet-34 network

developed by He et al. [26] as the network model with some

modification, such as a few layers removed. The model has
been trained with several datasets, such as the face scrub

dataset, the VGG dataset, and others, with a total of 3 million

face images so that we can just use it right away [27].

Currently, the library has released a 19.17 version and is still

developing.

II. MATERIALS AND METHOD

We needed to do several processes to build a face

recognition application properly. These stages were aimed to
collect information and propose the best design fitting the

requirements.

A. System Overview

According to the problems described in the introduction,

we developed a desktop application that can find specific

images in a hard drive based on the entered face photo. In

order to fit into the Dlib library and run-on various desktop

machines, this application was built in Python language. Thus,
the computers that would run this application have to install a

Python environment first. The two main tasks of the

application were scanning all images in a drive and save the

1223

results in the database; and searching for specific faces based

on the scanning results.

To support the scanning images task, we built several

functions, such as choose_directory, scan_images,

face_encoding, and save_the_result. The choose_directory

function works by asking the user to pick a folder that it wants

to scan. This function utilized the API of the OS file manager

and OS device manager provided by the operating system.

The results, an array of various files stored in the folder, will

be received by the scan_images function. This function will

only sort files in the form of images in bmp, png, and jpg
formats. Next, by utilizing the Dlib library, the pictures will

be analyzed to find all human faces. The processes will

produce the face location and the embedding values for every

face that is successfully identified in images. By using the

SQLite3 library, the data output will be saved in the database.

For more detail, see figure 2.

Fig. 2 System overview of scanning images

The next task is searching for specific faces. It is similar to

the previous task, which is detecting dan extracting the image

containing human faces. The difference is that the resulting

embedding value is not stored, but it is compared with all

embedding values saved before. If it is matched, the images

that have those embedding values will be shown to the user.

For more detail, see figure 3.

Fig. 3 System overview of searching for specific faces

B. Data Collection

To produce a system that can search for photos of one's face,

digital images are needed as the images collection that will be

targeted for face search. The images will be read and extracted

through their main characteristics to produce embedding

information stored in the database. Thus, in this stage, we

gather some public images.

In this case, we used photos of football players from the

Italian club, Juventus, which can be downloaded from sports
news websites with various formats, such as .bmp, .jpg,

and .png. The resolution and file size to be used are not limited.

First, we downloaded profile pictures of top Juventus players

as follows.

TABLE I

PEOPLE FACE BEING SEARCHED IN IMAGE COLLECTION

Number Person’s name Initial Photo

1 Ronaldo R

2 Dybala D

3 Pjanic P

4 Chiellini C

5 Buffon B

1224

Next, we needed to download images containing the faces

of the people above with various poses. Each downloaded

image was further analyzed manually in terms of the person’s

identity in the picture. The result of the image collection that

has been downloaded and analyzed is displayed below.

TABLE II

IMAGE COLLECTION

 Filename Size
The face of

R D P C B

1 dybala-is-clapping.jpg 48 KB - � - - -

2
bernardeschi-is-
shocked.jpg

70 KB - - - - -

3
dybala-and-

ronaldo.jpg
58 KB � � - - -

4
pjanic-and-
ronaldo.jpg

52 KB � - � - -

5
dybala-try-to-hold-
the-ball.jpg

48 KB - � - - -

6
ronaldo-is-
heading.jpg

46 KB � - - - -

7
ronaldo-and-bonucci-
hold-mandzukic.jpg

49 KB � - - - -

8 dybala-celebration.jpg 40 KB - � - - -

9
ronaldo-and-bonucci-
give-support.jpg

60 KB � - - - -

10 chiellini.jpg 56 KB - - - � -
TOTAL 5 4 1 1 0

C. Requirement Analysis

When a user wants to find someone's photos in a huge

image collection, the problems that appear when a user wants

to find someone’s photos in a huge image collection will be

solved by designing a face image search feature. This feature

needs three steps as follows.

 The user defines the directory of image collection set as
a searching target location.

 The user runs the training process that aims to identify

all image files in the directory, generate the embedding

value of each image, and save the database's values.

 The user inputs someone’s face that wants to be

automatically found in the image collection.

For more detail, please see the figure below.

Fig. 4 Our proposed application workflow

When the user inputs someone’s face photo, this feature

will extract the photo using Dlib's CNN model to get its

embedding value. The classification algorithm then matches

this value with the embedding values that have been stored in

the database. If matched, the photos are what we are looking

for. The photos that we found will be displayed in the form of

a list view to ease the user in seeing in detail of file’s metadata,

such as file name, size, created date, and file location. The

open button is also provided for opening the image in the

default image viewer application.

Generally, the image collection is saved in external storage

such as memory card, flash disk, and external hard disk.

Therefore, the application should run on a desktop computer

that can read data from external sources properly. Because it
involves image processing methods that need high

computation resources, it requires a computer with a

satisfying specification. Therefore, the requirements of the

application are as follows.

 Functional needs

a. Search directory settings menu

b. Run the training process menu.

c. The face photo input menu for a specific photo the

user is looking for.

d. The search results page in the form of a detailed list

e. Menu to open files from search results
 Operational needs

a. Open-source software

b. Runs well on Windows, Mac, or Linux

c. Minimum RAM of 4GB

d. Intel i5 processor or equivalent

D. Application Design

Based on the results of the needs analysis, the application

user interface design is made as follows.

Fig. 5 Application user interface design

Face photo search application consists of 3 buttons, namely:

1) 'Set Search Folder' to choose which directory to target

as a photo search location.

2) Run Training' button to run the training process and
generally takes a longer processing time, depending on the

number of image files in the search location folder and

subfolder.

3) 'Input the Face' button to enter the sample face image

that the user wants to search. Next, after entering a face image,

the application will automatically search for and display search

results in the list view.

1225

E. Database Design

To simplify data processing, this research utilized a

Database Management System (DBMS) called SQLite that

has been integrated with the Python platform. A database is

needed to store information on the training process results in
the form of the embedding value of each image file in the

target directory. Thus, the database schema design used by the

application is described as follows.

When the user runs the ‘Training’ process, the application

will list all files with image type in the target directory. The

obtained data, such as file name, size, file location, and file

creation date, are stored in the image table. The image_id

attribute will be created uniquely and automatically generated

by the DBMS with the auto_increment facility provided. In

each image, a face detection process will be carried out to find

the location of the facial coordinates in an image. The location
of this coordinate is stored with the face_location attribute in

the face table. Then proceed with the face encoding process,

which aims to produce an embedding value from each face.

This value is stored in the embedding_val attribute in the face

table. When completing the embedding process, the

timestamp is stored in the created_at attribute, and the

image_id attribute is written with the id of the image file being

processed. Similar to the image_id attribute in the image table,

the face_id attribute will also be made uniquely and

automatically generated by the DBMS with the

auto_increment facility provided. Table relationships are

made one-to-many because one picture can contain more than
one person's face.

Fig. 6 Database schema

III. RESULT AND DISCUSSION

Based on the design formulated in the previous section, the

final result of the face photo search application is explained

as follows.

A. Application Development Results

When the face photo search application is launched, the

main page displays 3 main buttons, namely 'Set Search
Folder', 'Run Training', and 'Input the Face'. At the bottom of

the page, the search result’s table is still empty because the

search has not been performed.

When the 'Set Search Folder' button is clicked, a dialog

page will appear to select which directory or folder to target

the face photo search location. After selecting the folder, it

will return to the main application page. Next, select the 'Run

Training' button to run the training process for several minutes,

or even hours, depending on how many image files are found

in the target location directory. After completing the training

process, select the 'Input the Face' button to enter the face

image file to search.

Fig. 7 The main interface of the application

Fig. 8 The search target directory selection dialogue page

Fig. 9. Search result page

When the user enters a face image to be searched through
the 'Input the Face' button, the application will search for that

specific face in the target directory and display its search

results in the search result table.

B. Precision and Recall Testing

To find out how well the performance of the face photo

search application, several performance testing were

performed, namely precision and recall testing. Testing

precision and completeness (recall) were done by marking all
photos containing certain faces (such as Mr. X's face) in a

directory and then running the application to find photos of

those faces. Precision rate (P rate) is the ratio between the

number of someone’s face correctly recognized and the

number of someone’s is recognized, while recall rate (R rate)

is the ratio between the number of someone’s face correctly

recognized and the number of someone’s face occurs [28].

1226

This testing tested the image collection of football players,

which were downloaded from a sports news website (Table I

and Table II). The test results are displayed as follows.

TABLE III

SEARCHING RESULTS

No
Found faces

R D P C B

1 - �(true) - - -

2 - - - - -

3 �(true) �(true) - - -

4 - - �(true) - -

5 - - - �(false) -

6 �(true) - - - -

7 - - - - -

8 - �(true) - - -

9 �(true) - - - -

10 - - - �(true) -

Total 3 3 1 2 0 Average

P

Rate

3/3

(100%)

3/3

(100%)

1/1

(100%)
½ (50%)

1

(100%

)

90%

R

Rate

3/5

(60%)

¾

(75%)

1/1

(100%)

1/1

(100%)

1

(100%

)

87%

According to the testing results examined to 5 people's

faces, the average precision rate is 90%, and the recall rate is

87%. This means that the proposed application with the Dlib

library can perform well. Several images that were failed to

find by the application is pjanic-and-ronaldo.jpg, ronaldo-

and-bonucci-hold-mandzukic.jpg, and dybala-try-to-hold-

the-ball.jpg, which contain difficult face poses to detect by

Dlib library.

Fig. 10 Photo pjanic-and-ronaldo.jpg

Figure 10 and 11 show that Ronaldo’s faces were failed to

be detected by the application, but other persons such as
Pjanic was successfully recognized. This condition has

happened because Ronaldo's faces are not facing the camera

so that the Dlib model had difficulty recognizing half the face.

The face recognition system has the best accuracy when

dealing with frontal faces (a face facing the camera).

However, this is currently being explored to create a precision

face recognition model that can recognize any face in various

poses [29], [30].

Fig. 11 Ronaldo’s faces that fail to be detected by the application.

IV. CONCLUSION

Based on the demonstrated experiments, we created a face

searching application that runs on a desktop computer. It has

an acceptable precision and recall rate considering the

limitation of the face recognition model. For future studies,

based on the problems we analyzed above, other researchers

should develop face recognition models with new approaches

that can deal with any face with different scales, poses,
occlusion, expression, make-up, and illumination.

ACKNOWLEDGMENT

This research was funded by the Institute for Research and

Community Services (LPPM), Udayana University, through

Study Program Excellent Research (PUPS).

REFERENCES

[1] Z. Wei et al., “AutoPrivacy: Automatic privacy protection and tagging

suggestion for mobile social photo,” Comput. Secur., vol. 76, pp. 341–

353, 2018, doi: https://doi.org/10.1016/j.cose.2017.12.002.

[2] Y. Lei, Y. Chen, L. Iida, B. Chen, H. Su, and W. H. Hsu, “Photo Search

by Face Positions and Facial Attributes on Touch Devices,” in

Proceedings of the 19th ACM international conference on Multimedia,

2011, pp. 651–654.

[3] D. Wang, C. Otto, and A. K. Jain, “Face Search at Scale,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1122–1136, 2017, doi:

10.1109/TPAMI.2016.2582166.

[4] H. Kang and B. Shneideman, “Visualization Methods for Personal

Photo Collections : Browsing and Searching in the PhotoFinder,” in

IEEE International Conference on Multimedia and Expo (ICME),

2000, vol. 03, pp. 1539–1542.

[5] M. Wang and W. Deng, “Deep face recognition: A survey,”

Neurocomputing, vol. 429, pp. 215–244, 2021, doi:

https://doi.org/10.1016/j.neucom.2020.10.081.

[6] G. Guo and N. Zhang, “A survey on deep learning based face

recognition,” Comput. Vis. Image Underst., vol. 189, p. 102805, 2019,

doi: 10.1016/j.cviu.2019.102805.

[7] I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep Face Recognition:

A Survey,” Proc. - 31st Conf. Graph. Patterns Images, SIBGRAPI

2018, pp. 471–478, 2018, doi: 10.1109/SIBGRAPI.2018.00067.

[8] R. Jafri and H. R. Arabnia, “A survey of face recognition techniques,”

J. Inf. Process. Syst., vol. 5, no. 2, pp. 41–68, 2009.

[9] M. Wang and W. Deng, “Deep Face Recognition: A Survey,” CoRR,

vol. abs/1804.0, 2018, doi: 10.1109/SIBGRAPI.2018.00067.

[10] M. Lal, K. Kumar, R. H. Arain, A. Maitlo, S. A. Ruk, and H. Shaikh,

“Study of Face Recognition Techniques: A survey,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 6, pp. 42–49, 2018, doi:

10.14569/IJACSA.2018.090606.

[11] Q. Wang and G. Guo, “Benchmarking deep learning techniques for

face recognition,” J. Vis. Commun. Image Represent., vol. 65, p.

102663, 2019, doi: 10.1016/j.jvcir.2019.102663.

[12] Y. Taigman, M. A. Ranzato, T. Aviv, and M. Park, “DeepFace :

Closing the Gap to Human-Level Performance in Face Verification,”

2014.

1227

[13] S. Z. Li and A. K. Jail, Handbook of Face Recognition. London:

Springer, 2011.

[14] M. P. Beham and S. M. M. Roomi, “A review of face recognition

methods,” Int. J. Pattern Recognit. Artif. Intell., vol. 27, no. 4, pp.

13560051–135600535, 2013, doi: 10.1142/S0218001413560053.

[15] S. Haykin, Neural Networks and Learning Machines Third Edition,

vol. 3. New Jersey: Pearson Education, 2009.

[16] A. Elmahmudi and H. Ugail, “Deep face recognition using imperfect

facial data,” Futur. Gener. Comput. Syst., vol. 99, pp. 213–225, 2019,

doi: 10.1016/j.future.2019.04.025.

[17] H. Habibi, A. Elnaz, J. Heravi, P. Application, and T. Detection, Guide

to Convolutional Neural Networks. Springer, 2017.

[18] Y. Cai, Y. Lei, M. Yang, Z. You, and S. Shan, “A fast and robust 3D

face recognition approach based on deeply learned face representation,”

Neurocomputing, vol. 363, pp. 375–397, 2019, doi:

10.1016/j.neucom.2019.07.047.

[19] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human

Detection,” 2005.

[20] L. Boussaad and A. Boucetta, “Deep-learning based descriptors in

application to aging problem in face recognition,” J. King Saud Univ.

Comput. Inf. Sci., 2020, doi: 10.1016/j.jksuci.2020.10.002.

[21] A. Geitgey, “Machine Learning is Fun! Part 4: Modern Face

Recognition with Deep Learning,” Medium.com, 2016.

[22] D. S. Trigueros, L. Meng, and M. Hartnett, “Face Recognition : From

Traditional to Deep Learning Methods,” arXiv e-prints, p.

arXiv:1811.00116, 2018.

[23] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet : A Unified

Embedding for Face Recognition and Clustering,” 2015.

[24] L. Shi, X. Wang, and Y. Shen, “Research on 3D face recognition

method based on LBP and SVM,” Optik (Stuttg)., vol. 220, p. 165157,

2020, doi: https://doi.org/10.1016/j.ijleo.2020.165157.

[25] D. E. King, “Dlib-ml : A Machine Learning Toolkit,” J. Mach. Learn.

Res., vol. 10, pp. 1755–1758, 2009.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” CoRR, vol. abs/1512.0, 2015.

[27] D. E. King, “dlib-models,” Github, 2018.

[28] M. Junker, R. Hoch, and A. Dengel, “On the Evaluation of Document

Analysis Components by Recall, Precision, and Accuracy,” Proc.

Fifth Int. Conf. Doc. Anal. Recognition. ICDAR’99, pp. 713–716, 1999.

[29] M. Taskiran, N. Kahraman, and C. E. Erdem, “Face recognition: Past,

present and future (a review),” Digit. Signal Process. A Rev. J., vol.

106, p. 102809, 2020, doi: 10.1016/j.dsp.2020.102809.

[30] L. Zhou, W. Li, Y. Du, B. Lei, and S. Liang, “Adaptive illumination-

invariant face recognition via local nonlinear multi-layer contrast

feature,” J. Vis. Commun. Image Represent., vol. 64, p. 102641, 2019,

doi: 10.1016/j.jvcir.2019.102641.

1228

