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Abstract— In this paper, a new population update strategy is proposed to overcome the limitations of the non-dominated sorting 
Harris’s hawk multi-objective optimizer (NDSHHMO) algorithm. In the NDSHHMO algorithm, the population of hawks is updated 
based on the average positions of the first three best solutions in the search space. This update strategy leads to the algorithm falling 
into local optima due to population diversity loss, which causes poor convergence toward the true Pareto front. The proposed 
population update strategy is inspired by the flush-and-ambush (FA) tactic employed by the Harris’s hawks in nature. The proposed 
algorithm is called non-dominated sorting Harris’s hawks’ multi-objective optimizer based on the flush-and-ambush tactic (FA-
NDSHHMO). The population update strategy in the FA-NDSHHMO includes two main stages, namely, updating the position of 
hawks using proposed flush-and-ambush movement strategy and selecting the best hawks by using a non-dominated sorting approach 
to be used in the next generation. The proposed population update strategy aims to improve the search ability of the algorithm, in 
terms of the diversity of a non-dominated solution and convergence toward the Pareto front. To evaluate the performance of the FA-
NDSHHMO algorithm, a set of 10 multi-objective optimization problems has been used. The obtained results show that the new 
population update strategy has improved the search ability of the FA-NDSHHMO. Furthermore, the results show superiority of the 
FA-NDSHHMO algorithm compared to the NDSHHMO, multi-objective grasshopper and grey wolf optimization algorithms. 
 
Keywords— swarm intelligence; metaheuristic; population-based; optimization algorithm. 
 
 

I. INTRODUCTION 

Swarm intelligence-based (SI-based) metaheuristics, 
inspired by nature, have gained great interest in the 
development of new metaheuristics. The SI-based algorithms 
mimic natural biological evolution processes, foraging 
behaviours, or physical phenomena. These algorithms 
include, but are not restricted to, particle swarm optimization 
(PSO) [1], grasshopper optimization algorithm [2], grey wolf 
optimizer (GWO) [3] and ant colony optimization algorithm 
(ACO) [4]. Metaheuristics have been successfully applied to 
solve optimization problems in different areas such as 
engineering, industry and science [5], [6]. However, 
optimization problems in real-world applications usually 
include two or more conflicting objectives, where improving 
an objective leads to the degradation of others. The classical 
method for multi-objective optimization (MOO) converts the 
problem with multiple objectives into a single-objective 
optimization problem (SOP) and then uses a single objective 
optimization algorithm to solve it. However, this method 
becomes less efficient with the increasing complexity of the 
problem and increasing number of objectives, which drives 
more research towards designing more effective optimization 
algorithms.     

SI-based optimization algorithms are inherently based on a 
population of multiple solutions that can generate as many 
solutions as possible in a single execution with the ability to 
find multiple solutions simultaneously. Thus, SI-based 
metaheuristics are useful for MOO [7]. The multi-objective 
SI-based metaheuristics extend single optimization 
algorithms to handle multi-objective optimization problems 
(MOPs) such as, multi-objective particle swarm optimization 
[8], multi-objective grasshopper optimization algorithm 
(MOGOA) [9] and MOGWO [10].  

In Yasear and Ku-Mahamud [11] the non-dominated 
sorting Harris’s hawk multi-objective optimizer 
(NDSHHMO) algorithm has been proposed. This algorithm 
combines the non-dominated sorting (NDS) of  Deb, et al. 
[12] with HHMO and has shown better performance in 
dealing with MOPs. Updating the population of solutions is 
one of the main processes in the SI-based metaheuristics. In 
the NDSHHMO algorithm, the new position of hawks 
(candidate solutions) is updated based on the average 
positions of three leaders.  These leaders represent the first, 
second and third best solutions in the search space, and the 
positions of other hawks are not considered in updating the 
position of hawks [13], [14].  
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This indicates a lack of sharing the information between 
the hawks in the population. In this case, the NDSHHMO 
algorithm will not be able to escape from local optima, due 
to the loss of population diversity, especially, in solving 
complex MOPs [13, 14]. This, in turn, leads to poor 
convergence toward the true Pareto front (PF) [15, 16]. 
Sharing of information by utilizing the experiences of all 
hawks during the search process is very important to 
accelerate and ensure the convergence and diversity of the 
obtained solutions [17, 18]. The cooperation between 
individuals during the searching process is one of the main 
concepts of the SI system [19]. In this context, this paper 
aims to improve the NDSHHO algorithm by proposing a 
new population update strategy that considers the diversity 
of the produced solutions and the contribution of all hawks 
in updating their position. The diversity and convergence of 
the FA-NDSHHMO have been evaluated through a 
comparison with the original NDSHHMO, MOGWO and 
MOGOA algorithms in solving 10 MOPs.  

The organization of the paper is as follows: the 
NDSHHMO algorithm is presented in Section II, followed 
by introducing the improved NDSHHMO in Section III. The 
experimental design and results are provided in Sections IV 
and V, respectively. Concluding remarks are presented in the 
final section. 

II. MATERIAL AND METHOD 

A. Non-dominated Sorting Harris’s Hawk Multi-Objective 
Optimizer 

The NDSHHMO algorithm [11] is an SI-based 
metaheuristic inspired by the social hierarchy and hunting 
behaviour of the Harris’s hawk in nature [20]. In the 
NDSHHMO algorithm, each hawk can be considered as a 
candidate solution for a problem. Based on the number of 
reference points (the prey), the population is divided into 
groups. Each group includes three leaders (α, β and δ), and γ, 
the remaining hawks. The leaders are the hawks that have 
the three shortest distances to a reference point, Z. During 
the optimization process, the movement direction of the Xγ 
hawks is determined according to the average positions of 
leaders Xα, Xβ and Xδ to move towards the prey. This 
behaviour is formulated as shown in Equation (1). 
 �⃗�� + 1� = �⃗	��� − �⃗ ∗ 
��⃗  (1) 
 
X = ( x1, x2, ·  · · , xd) is the position vector of the hawks, 
while Xp = (xp1, xp2;…, xpd) is the position vector of the prey 
in d dimension at iteration t. 
��⃗  is the distance between the 
hawk and the prey, which is calculated for each group as 
shown in Equation (2). �⃗  and �⃗  are convergence factors 
calculated as shown in Equation (3) and (4), respectively. 
 
��⃗ = � ∗ �⃗���� − �⃗��� (2) �⃗ = 2�⃗ ∗ �� − �⃗ (3) �⃗ = 2 ∗ �� (4) 
 
where a is the convergence parameter which decreases 
linearly from 2 to 0 with the number of iterations. r1 and r2 

are random numbers in interval [0,1]. The position of hawks 
is updated as shown in Equations (5) and (6). 
 �⃗�� + 1� = ��⃗���� + �⃗���� + �⃗�����3  (5) ��⃗ ��� + 1� = ��⃗ ���� − ��⃗ � ∗ 
��⃗ � ��⃗ ��� + 1� = ��⃗ ���� − ��⃗ � ∗ 
��⃗ � ��⃗ ��� + 1� = ��⃗ ���� − ��⃗ � ∗ 
��⃗ � 

(6) 

 
The position update strategy in NDSHHMO does not 

consider the positions of other hawks, Xγ, in updating the 
position of hawks in the search space. This leads to a loss of 
population diversity due to high selection pressure in which 
the algorithm depends only on the three best solutions to 
guide the search process [21]. The high selection pressure 
and loss of population diversity leads to poor convergence 
toward the true PF [22].  

 

B. Improved Non-dominated Sorting Harris’s Hawk Multi-
Objective Optimizer 

In any optimization algorithm, the population update 
strategy can be considered as the core of the algorithm, 
which is used to produce new solutions. This section 
introduces the proposed population update strategy. This 
strategy is integrated with the NDSHHMO algorithm to 
further improve the diversity of obtained solutions and the 
convergence toward the true PF.   

The proposed population update strategy of hawks 
consists of two main stages. The first stage is to calculate the 
new position of hawks by using a new movement strategy 
and the second stage is to select the hawks to be used in the 
next generation. Fig. 1 shows the proposed population 
update strategy with the NDSHHMO algorithm. 

 

 
Fig. 1 Proposed population update strategy 
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In the first stage, a new movement strategy is used to 
calculate the new positions of the hawks. This movement 
strategy is developed based on the hunting behaviour 
employed by the Harris’s hawks in nature. Harris’s hawk 
attacks are quite coordinated. According to Bednarz [20], 
who observed Harris's hawks over a period of years, their 
hunting behaviour involves different tactics. These tactics 
vary in an unpredictable sequence, based on the changing 
circumstances that occur during pursuit of prey. One of these 
tactics is called “flush-and-ambush” [20]. This tactic is 
employed when a prey finds temporary refuge or cover, as 
illustrated in Fig. 2 [23]. 

 

 
Fig. 2 Flush-and-ambush tactic: The prey finds temporary refuge or cover  

 
In the flush-and-ambush tactic (FA), the hawks are alert in 

watching the location where the prey disappeared. 
Meanwhile, one or possibly two hawks attempt to penetrate 
the cover. Then, when the prey is flushed, one or more of the 
hawks pounce and kill the prey [20]. Based on the hunting 
tactics of these hawks, the proposed movement strategy is 
formulated as shown in Equation (7). 

 �⃗�� + 1�
= � ��⃗���� + �⃗���� + �⃗ ���!3        ;    if % ≥ 0.5   �⃗*+                                               ;    otherwise 

(7) 

where p is a random value in interval [0,1]. In the proposed 
movement strategy, the new position, �⃗�� + 1� is calculated 
based on the random-proportional rule. This rule is an action 
choice rule typically used in Q-learning [24]. With this 
rule, the action is chosen randomly with a probability of 
50%. This means that the old and proposed position update 
strategy have exactly the same probability to be chosen to 
calculate the new positions of hawks. The random-
proportional rule has also been used in other algorithms [25, 
26]. Fig. 3 illustrates the proposed movement strategy. 

 
 
 

 
Fig. 3 Proposed flush-and-ambush movement strategy 

 
If % ≥ 0.5, this indicates that Xα, Xβ and Xδ hawks have 

spotted the location of the prey. In this case, Equation (5) in 
the original update strategy will be employed to generate 
new positions of hawks according to the positions of leaders. 
Otherwise, if the pray escapes, the positions of hawks will be 
updated based on the FA movement strategy, which is 
represented by �⃗*+ value, as shown in Equation (7). 

 �⃗*+�� + 1� = 3  �⃗4��� − �⃗ ∗ 
��⃗ 4      ;    if |�| ≥ 1�⃗���� − �⃗ ∗ 
��⃗ �      ;   otherwise (8) 

 
the value of �⃗*+ is proportional to the absolute value of A.  
In this approach, the hawks move forward and backward 
from the prey based on the value of |�|. If |�| ≥ 1 , the 
hawks will explore the desert site looking for potential prey. 
If |�| < 1 forces the hawks to move towards the prey. In the 
proposed FA movement strategy, Equation (8), if |�| ≥ 1, 
this indicates the prey has successfully escaped from the 
hawks and found temporary cover (refer Fig. 3). In this case, �⃗*+ is calculated using a random hawk, �⃗4, which is selected 
from the current population, represented by Xγ hawks, to 
guide the search process. The random position of the hawk 
represents the exploration of different regions to find the 
location of the covered prey. If |�| < 1 , this represents 
penetrating the cover of the prey. In this case, the Xα hawk 
makes the final move to kill the prey. In other words, the 
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new position of hawks is calculated according to the �⃗� 
hawk in a group, which represents the nearest hawk to the 
prey.  

The second stage of updating the population of hawks 
requires selecting the non-dominated solution to be used in 
the next generation. To select the non-dominated solutions, 
the NDS is used [27]. In this approach, the population of 
parent and offspring are combined to produce a population 
of size 2N. This population is sorted and classified according 
to the Pareto dominance relation between the solutions, 
forming several front levels. The individuals that have the 
best quality in the population are considered as a first level 
of frontier, F1 and assigned the rank 1. Subsequently, these 
individuals are temporarily eliminated from the competition. 
The non-dominated individuals in the remaining population 
are selected to construct the second level of frontier, F2 and 
assigned the rank 2. These processes are repeated until there 
is no individual left. In this way, the population is divided 
into multiple non-dominated frontiers, each defining a 
specific quality level. Fig. 4 illustrates the principle of NDS 
[12]. 

 
Fig. 4 Concept of the NDS approach approach  

 
To perform NDS, the two population parents, Pt and off-

spring, Qt are combined into a single Rt population 
composed of 2N solutions. To select the best solutions, the 
solutions of the Rt population are sorted based on the Pareto-
dominance relation between the solutions, forming several 
front levels namely F1, F2 and F3. The solutions in the first 
level, F1 are not dominated by any other solutions in the Rt 
population, and assigned the rank 1. The second level 
consists of non-dominated solutions in P-F1 and assigned the 
rank 2. The third level includes P-F1-F2 and assigned the 
rank 3, and so on until all solutions are sorted into several 
fronts. 

In general, with NDS-based algorithms, if the number of 
solutions in F1 is less than the predefined population size, N, 
the rest will be selected from the next front, F2. If the total 
number of selected solutions exceed N, the solutions of F1 

will be moved to the next generation and the rest will be 
selected from F2 based on another quality criterion.  

Several studies have proved the effectiveness of the NDS 
approach [12] with many MOO algorithms [12, 28, 29]. The 
NDS approach helps in improving the convergence of the 
algorithm towards the true PF, especially for dealing with 
complex MOPs with a large number of local PFs [30].  

In the NDS approach, the crowding distance [12] 
determines which individuals will survive for the next 
generation. The crowding distance estimates the degree of  a 
solution crowding  by calculating  the average distance of its 
two neighbouring solutions. Solutions that are on the edge of 
the PF have only one neighbour, but they are the most 
diverse of the border, so they obtain high values and, 
consequently, are at the top of the order. The solutions with 
bigger crowding distance are preferred. However, in some 
cases, the crowding distance approach cannot be used to 
select appropriate solutions, which may affect the diversity 
of solutions. Fig. 5 illustrates the limitation of the crowding 
distance approach. 

 

 
Fig. 5 Crowding distance approach 

 
In Fig. 5, A, B, C, D, E and F represent non-dominated 

solutions in the PF. The cuboids represent the crowding 
distance of all solutions, except the extreme solutions, 
namely F and A, which have an infinite crowding distance. 
Five out of six solutions should be selected. To maintain 
population diversity, solution B should be selected with any 
one out of solutions D and E [31]. However, based on the 
calculation of crowding distance, solutions D and E are 
selected instead of solution B because they have larger 
crowding distance values. In this case, the diversity of the 
selected solutions is not preserved and leads to poor 
population diversity [31].  

In the FA-NDSHHMO, the epsilon-clearing (ε-clearing) 
strategy [27] is used instead of the crowding distance to 
select between solutions that have the same rank. In  the ε-
clearing strategy, the objective space is divided into grids 
based on the ε value. The solutions with a difference less 
than ε are discarded from the population. This helps in 
maintaining the diversity of poulation. If there are more than 
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enough points to complement the new population, the 
Euclidean distance (ED) is used to select the individual with 
minimum distance to Z. The population update strategy aims 
to improve the search ability of the algorithm. The value of ε 
in the ε-clearing strategy allows the decision-maker to 
control the density of the obtained non-dominated solutions. 

[32].  The proposed population update strategy is integrated 
with the NDSHHMO algorithm to produce a non-dominated 
sorting Harris’s hawk multi-objective optimizer based on the 
flush-and-ambush tactic (FA-NDSHHMO). The main steps 
of the FA-NDSHHMO algorithm are shown in Fig 6. 

 

 
Fig. 6 FA-NDSHHMO algorithm 

 
In the FA-NDSHHMO algorithm, the population of 

hawks is initialized using the random number generator 
method. The objective function, fm(Xi) is used to evaluate 
each hawk in the population. The normalized ED [27] from 
each solution in the objective space to Z is calculated and 
used as a fitness value for each hawk. This is followed by 
dividing the population into groups according to the number 
of reference points. The new generation of hawks is 
calculated using the proposed population update strategy, 
which includes two stages. In the first stage, the position of 
hawks is updated using the proposed movement strategy. In 
the second stage, the best hawks are selected by using the 
NDS approach. The algorithm stops when the terminate 
condition is met, in which t becomes equal to the maximum 
number of iterations (MaxIteration). Fig. 7 shows the 
selection procedure.   

 
Algorithm 1: Selection 
1 Combine Pt and Qt to generate Rt 
2 For each point 
3  Calculate the ED, between fm(Xi) and Z 
4 end for 

5 Performing NDS to produce the front levels. 
6 Select individual to produce next generation: 

7 
 If number of individuals in the current front > N, 

perform ε-clearing strategy. 

8 
  i. Not enough individuals, move to the next front. 

ii. There is more than enough individuals, 
chooses the ones with the minimum ED. 

9  end if 
Fig. 7 Main steps of selection procedure 

In the selection procedure, the populations Pt and Qt are 
combined to produce R, where the size of Rt is 2N. This is 
followed by calculating the ED between each solution in the 
objective space, fm(Xi), and Z. Then, the best hawks are 
selected by performing the NDS with ε-clearing strategy to 
produce a population of size N. The new positions are 
evaluated using the objective function and the new leaders 
are selected from the new population based on the shortest 
ED to the Z. Fig. 8 shows the procedure of selecting leaders.  

 
Algorithm 3: Select_Leaders 

10 For each hawk in a group 
11  Calculate the ED  of solution in fm(Xi) and Z 
12 end for 
13 Sort the EDs 

14 Find minimum first three values to be Xα, Xβ and Xδ δ, 
respectively. 

Fig. 8 Main steps of Select_Leaders procedure 

III.  RESULTS AND DISCUSSION 

A. Experimental Design 

The UF series proposed by Zhang, et al. [33] has been 
used in evaluating the performance of the FA-NDSHHMO. 
This set includes UF1-UF10 MOPs that have convex, 
concave and disconnected PF characteristics. The UF1-UF7 
involves two objectives and UF8-UF10 are three objectives 
problems. These MOPs are widely used in the literature for 
the validation of the proposed algorithms [34-38]. This is 
due to the difficulties regarding convergence and diversity. 
Table I shows the characteristics of the UF problems. 

TABLE I 
CHARACTERISTICS OF THE UF PROBLEMS 

MOP Pareto border Dimension M 
UF1 

Convex 

30 

2 

UF2 
UF3 
UF4 Concave 
UF5 Discontinuous 
UF6 Discontinuous 
UF7 Convex & concave 
UF8 

Concave 3 UF9 
UF10 

 
The performances of NDSHHMO, FA-NDSHHMO, 

MOGWO and MOGOA algorithms were compared under 
the same conditions. The population size is set at 100 
individuals for each problem. The MaxIteration has been set 
at 3000. Each algorithm runs independently 10 times and the 
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algorithm stops when the number of iterations of each 
running reaches the value of MaxIteration. The parameters 
for the MOGWO and MOGOA algorithms are set as 
recommended by their respective authors. For FA-
NDSHHMO and NDSHHMO, different reference points 
were used with each test problem, as shown in Table II. 

TABLE II 
SETTINGS OF REFERENCE POINTS 

MOP M Reference point 
UF1 

2 

(0.5,0.4), (0,0.8), (0.8,0) UF2 
UF3 
UF4 (0.7, 0.7); (0,0.95); (0.9, 0) 
UF5 (0.6,0.6); (-0.1,0.81); (0.81,-0.1) 
UF6 (0.95,0.15); (0.25,0.65) 
UF7 (0.55,0.45); (0.1,0.8); (0.8, 0.1) 
UF8 

3 
(0.2,0.2,0.9); (0.5,0.5,0.5) 

UF9 (0.7,0.2,0.2); (0.2,0.7,0.2) 
UF10 (0.2,0.2,0.9); (0.5,0.5,0.5) 

 
In this study, the effictiveness of the FA-NDSHHMO 

algorithm is measured by the spacing (SP), inverted 
generational distance (IGD) and maximum spread (MS) 
metrics [9]. These metrics are given in Equations (8-10), 
respectively. 

 78
 = 9∑ ;<�=<>�? @  (9) 

where n is the number of solutions in the true PF, p = 2 and ;<� is the minimum ED between point i and the nearest point 
of the true PF. A smaller value for this metric indicates a 
better result, IGD=0 means that all the generated elements 
are in the true PF of the problem.  

 

AB = C 1@ − 1 D�;̅ − ;<��=
<>�  (10) 

where ;< = minH  �IJ�<�K⃗� − J�H�K⃗�I + IJ�<�K⃗� − J�H�K⃗�I�  for 
all i, j =1,2,3,…,n and ;̅ is the average of all di. 
 

LA = CD max�;��< , P<���Q
<>�  (11) 

where ai and bi are the maximum and minimum values in the 
i th objective and M is the number of objectives. d is the ED 
between ai and bi . Note that, the smaller value for IGD and 
SP metrics indicates better approximation for the PF of the 
problem. By contrast, the larger value of MS is better. For 
fair comparison, the statistical measures for 10 independent 
runs is calculated. These measures include the mean, 
standard deviation (SD), best and worst values of the IGD, 
SP and MS metrics. 

B. Experimental Results 

The credibility of the FA-NDSHHMO is evaluated by 
comparing it with the NDSHHMO, MOGWO [10] and 
MOGOA [9] algorithms in solving UF MOPs. The mean, 
SD, best and worst values of IGD and SP and, MS metrics 
were calculated and used in the comparison (refer Table III). 
Best results are highlighted.  

 

TABLE III 
MEAN, SD, BEST AND WORST IGD, SP AND MS VALUES OF                         

NON-DOMINATED SOLUTIONS OF THE UF PROBLEMS 

M
O

P
 

Algorithm Metric Mean  SD Best Worst 

U
F

1 

FA-
NDSHHMO 

IGD 0.0003 0.0000 0.0003 0.0004 
SP 0.0288 0.0125 0.0163 0.0562 
MS 1.5717 0.0639 1.4997 1.7002 

NDSHHMO 
IGD 0.0003 0.0000 0.0003 0.0004 
SP 0.0198 0.0078 0.0108 0.0343 
MS 1.5348 0.0653 1.4411 1.6693 

MOGWO 
IGD 0.1144 0.0195 0.0802 0.1577 
SP 0.0124 0.0054 0.0146 0.0008 
MS 0.9268 0.9327 0.0688 0.8180 

MOGOA 
IGD 0.1811 0.0250 0.1430 0.1811 
SP 0.0012 0.0011 0.0000 0.0012 
MS 0.7270 0.1507 0.9120 0.7270 

U
F

2 

FA-
NDSHHMO 

IGD 0.0003 0.0000 0.0002 0.0003 
SP 0.0139 0.0041 0.0090 0.0219 
MS 1.4043 0.0309 1.3525 1.4496 

NDSHHMO 
IGD 0.0003 0.0000 0.0002 0.0003 
SP 0.0146 0.0059 0.0071 0.0230 
MS 1.4331 0.0358 1.3734 1.4899 

MOGWO 
IGD 0.0583 0.0074 0.0498 0.0732 
SP 0.0111 0.0095 0.0036 0.0076 
MS 0.9097 0.9104 0.0287 0.8470 

MOGOA 
IGD 0.0959 0.0386 0.0488 0.0959 
SP 0.0007 0.0011 0.0000 0.0007 
MS 0.8845 0.0353 0.9360 0.8845 

U
F

3 

FA-
NDSHHMO 

IGD 0.0007 0.0001 0.0005 0.0009 
SP 0.0495 0.0359 0.0112 0.1262 
MS 1.3572 0.1441 1.1416 1.5482 

NDSHHMO 
IGD 0.0006 0.0001 0.0005 0.0007 
SP 0.0534 0.0383 0.0130 0.1195 
MS 1.3802 0.1772 1.1994 1.7309 

MOGWO 
IGD 0.1223 0.0107 0.1049 0.1437 
SP 0.0459 0.0486 0.0145 0.0155 
MS 0.8720 0.8744 0.0056 0.8599 

MOGOA 
IGD 0.2380 0.0662 0.1682 0.2380 
SP 0.0019 0.0024 0.0000 0.0019 
MS 0.1100 0.7060 0.4026 0.1100 

U
F

4 

FA-
NDSHHMO 

IGD 0.0003 0.0000 0.0003 0.0003 
SP 0.0115 0.0017 0.0085 0.0140 
MS 1.4224 0.0081 1.4136 1.4406 

NDSHHMO 
IGD 0.0004 0.0000 0.0004 0.0004 
SP 0.0099 0.0018 0.0076 0.0132 
MS 1.4197 0.0073 1.4088 1.4286 

MOGWO 
IGD 0.0587 0.0005 0.0580 0.0594 
SP 0.0097 0.0086 0.0039 0.0058 
MS 0.9424 0.0009 0.9433 0.9410 

MOGOA 
IGD 0.0702 0.0048 0.0639 0.0702 
SP 0.0001 0.0002 0.0000 0.0001 
MS 0.9050 0.0139 0.9310 0.9050 

U
F

5 

FA-
NDSHHMO 

IGD 0.0881 0.0068 0.0799 0.0991 
SP 0.0231 0.0250 0.0010 0.0667 
MS 1.6523 0.1019 1.4855 1.8356 

NDSHHMO 
IGD 0.0935 0.0147 0.0780 0.1177 
SP 0.0260 0.0193 0.0004 0.0608 
MS 1.6314 0.1060 1.4858 1.7779 

MOGWO 
IGD 0.7971 0.3786 0.4680 1.7386 
SP 0.1523 0.0878 0.1625 0.0084 
MS 0.3950 0.1749 0.6104 0.0301 

MOGOA IGD 1.1559 0.1661 0.8978 1.1559 
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SP 0.0007 0.0005 0.0001 0.0007 
MS 0.2379 0.1131 0.4894 0.2379 

U
F

6 

FA-
NDSHHMO 

IGD 0.0009 0.0002 0.0006 0.0014 
SP 0.0135 0.0078 0.0058 0.0287 
MS 1.5588 0.0548 1.4625 1.6147 

NDSHHMO 
IGD 0.0009 0.0002 0.0007 0.0014 
SP 0.0183 0.0118 0.0025 0.0384 
MS 1.5574 0.0649 1.4395 1.6287 

MOGWO 
IGD 0.2794 0.1045 0.1934 0.5504 
SP 0.0145 0.0111 0.0125 0.0019 
MS 0.6736 0.1232 0.8149 0.3884 

MOGOA 
IGD 0.7771 0.2769 0.4939 0.7771 
SP 0.0003 0.0004 0.0000 0.0003 
MS 0.1294 0.4600 0.0695 0.1294 

U
F

7 

FA-
NDSHHMO 

IGD 0.0002 0.0000 0.0002 0.0003 
SP 0.0281 0.0165 0.0112 0.0675 
MS 1.4798 0.0619 1.4138 1.5705 

NDSHHMO 
IGD 0.0002 0.0000 0.0002 0.0003 
SP 0.0142 0.0042 0.0083 0.0188 
MS 1.4374 0.0315 1.4146 1.5074 

MOGWO 
IGD 0.1604 0.1391 0.0628 0.4014 
SP 0.0082 0.0055 0.0086 0.0003 
MS 0.8013 0.3087 0.9875 0.0225 

MOGOA 
IGD 0.1726 0.0633 0.1150 0.1726 
SP 0.0001 0.0001 0.0000 0.0001 
MS 0.8460 0.0792 0.9570 0.8460 

U
F

8 

FA-
NDSHHMO 

IGD 0.0016 0.0001 0.0014 0.0017 
SP 0.0059 0.0034 0.0038 0.0154 
MS 1.2494 0.1334 1.0694 1.4113 

NDSHHMO 
IGD 0.0015 0.0000 0.0015 0.0016 
SP 0.0044 0.0007 0.0035 0.0059 
MS 1.2938 0.0436 1.2507 1.3747 

MOGWO 
IGD 2.0578 1.1455 0.4613 3.8789 
SP 0.0069 0.0047 0.0047 0.0037 
MS 0.4457 0.1857 0.8638 0.1886 

MOGOA 
IGD 0.2805 0.0749 0.2154 0.2805 
SP 0.0175 0.0085 0.0069 0.0175 
MS 0.4417 0.1586 0.6342 0.4417 

U
F

9 

FA-
NDSHHMO 

IGD 0.0016 0.0000 0.0016 0.0016 
SP 0.0043 0.0006 0.0034 0.0055 
MS 1.1356 0.0065 1.1266 1.1454 

NDSHHMO 
IGD 0.0016 0.0000 0.0016 0.0017 
SP 0.0043 0.0003 0.0037 0.0048 
MS 1.1557 0.0379 1.1241 1.2424 

MOGWO 
IGD 0.1917 0.0925 0.1291 0.4479 
SP 0.0174 0.0183 0.0063 0.0065 
MS 0.8399 0.1976 0.9375 0.2875 

MOGOA 
IGD 0.4885 0.1445 0.3336 0.4885 
SP 0.0234 0.0041 0.0172 0.0234 
MS 0.1635 0.6424 0.0677 0.1635 

  

FA-
NDSHHMO 

IGD 0.0018 0.0001 0.0017 0.0019 

 
  SP 0.0082 0.0109 0.0035 0.0390 

 
 MS 1.1454 0.1698 1.0695 1.6155 

   

NDSHHMO 
IGD 0.0024 0.0004 0.0016 0.0030 

U
F

1
0 SP 0.0168 0.0134 0.0056 0.0441 

MS 1.2173 0.3244 0.7850 1.6402 

MOGWO 
IGD 3.5945 3.4883 1.0431×

4 
12.956 

SP 0.0252 0.0150 0.0154 0.0000 
MS 0.2972 0.3465 0.9283 0.0319 

MOGOA 
IGD NA NA NA NA 
SP NA NA NA NA 
MS NA NA NA NA 

NA: not available 

The FA-NDSHHMO algorithm has the lowest mean IGD 
values in solving eight out of 10 problems which represents 
80% of the problems. The lowest IGD value indicates that 
the FA-NDSHHMO algorithm has better convergence 
toward the true PF. The second-best mean IGD values were 
achieved by the NDSHHMO algorithm in solving 20% of 
the problems. In terms of distribution of the obtained 
solutions, which has been measured by using SP and MS 
metrics, the MOGOA produced the lowest mean SP in 
solving seven problems. Thus, the MOGOA has managed to 
achieve the lowest mean SP values in solving 70% of the 
problems. The second-best SP value was obtained by FA-
NDSHHMO in solving 20% of the problems. However, 
based on the mean MS values, the FA-NDSHHMO 
algorithm showed better performance in solving 50% of the 
problems, while the NDSHHMO algorithm showed better 
performance in solving the other half of the problems. The 
pair-wise comparison between the FA-NDSHHMO and 
other algorithms, based on the mean IGD, SP and MS 
metrics, are presented in Table IV. The sign (-) denotes that 
the other algorithms yielded statistically better results than 
the FA-NDSHHMO algorithm. The sign (+) denotes cases 
where the FA-NDSHHMO algorithm outperforms the other 
algorithms. 

TABLE IV 
SUMMARY OF THE MEAN IGD, SP AND MS VALUES OF THE OBTAINED 

SOLUTIONS, FOR FA-NDSHHMO, NDSAHHMO, MOGWO AND MOGOA 

ALGORITHMS, IN SOLVING UF PROBLEMS 

MOP Algorithm 
FA-NDSHHMO 

IGD SP MS 

UF1 
NDSHHMO + + + 
MOGWO + + + 
MOGOA + - + 

UF2 
NDSHHMO + + - 
MOGWO + + + 
MOGOA + - + 

UF3 
NDSHHMO - + - 
MOGWO + + + 
MOGOA + - + 

UF4 
NDSHHMO + + + 
MOGWO + + + 
MOGOA + - + 

UF5 
NDSHHMO + + + 
MOGWO + + + 
MOGOA + - + 

UF6 
NDSHHMO + + + 
MOGWO + + + 
MOGOA + - + 

UF7 
NDSHHMO + + + 
MOGWO + + + 
MOGOA + - + 

UF8 
NDSHHMO - - - 
MOGWO + + + 
MOGOA + + + 

UF9 
NDSHHMO + + - 
MOGWO + + + 
MOGOA + + + 

UF10 
NDSHHMO + + - 
MOGWO + + + 
MOGOA + + + 
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Summarizing the results presented in Table IV, the FA-
NDSHHMO algorithm outperformed the NDSHHMO, 
MOGWO, and MOGOA algorithms in solving most of the 
MOPs. This is due to the proposed population update 
strategy, which helps in preserving the diversity and 
improves the convergence of the obtained solutions.  

In general terms, the results obtained from the 
experiments that have been carried out indicate that the use 
of the proposed population update strategy can significantly 
preserve the convergence ability towards the True PF and 
diversity of obtained solutions. The results emphasize that 
the population update strategy has the advantage in solving 
problems with convex, concave and discontinuous PF.  

IV.  CONCLUSION 

This paper proposed the FA-NDSHHMO algorithm to 
solve the limitations of NDSHHMO. In the FA-NDSHHMO 
algorithm a new population update strategy is proposed to 
improve the algorithm’s ability in searching. This is 
achieved by  maintaining the population diversity and 
improving the convergence toward the True PF. The 
proposed population update strategy consists of an FA 
movement strategy and NDS approach.  The main 
advantages of this strategy involve updating the population 
with respect to the experience of all hawks. Experimental 
results indicate that the FA-NDSHHMO provides superior 
performance compared to other algorithms, which implies 
the effectiveness of the proposed population update strategy. 
The proposed algorithm is expected to be used to solve other 
problems with three objectives or more and real-world 
MOPs. 
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