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Abstract— The features extracted from the fully connected (FC) layers of a convolutional neural network (ConvNet or CNN) can 

provide accurate classification results as long as the labelled datasets are large enough. On the other end, high accuracy remote 

sensing image (RSI) classification is demanded various implementations such as urban planning, environmental monitoring, and 

geographic image retrieval. Many studies have been presented in this domain; however, satisfactory classification accuracy is yet to 

be achieved. In this study, the proposed method of fine-tuning the pre-trained ConvNets (GoogleNet, VGG16, and ResNet50) on RSI, 

extracting features from the last fine-tuned FC layer of these networks and reprocess the extracted features for classification by SVM, 

produced high classification accuracy. Extensive experiments have been conducted on three RSI datasets: the NWPU, AID, and 

PatternNet. Comparative results over the selected datasets demonstrate that our method considerably outperforms the state-of-the-

art best-stated results. Also, the overall accuracy (OA) and confusion matrix report quantitative evaluation. Our best outcomes from 

the first part were 99.54%, 94.60%, and 94.83% on the PatternNet, NWPU, and AID datasets, respectively, achieved by fine-tuned 

ResNet50. Moreover, the best classification accuracies with training ratios 20% and 50% on the AID dataset, 10% and 20% on the 

NWPU dataset, and the 10%, 20%, 50% and 80% on PatternNet dataset were 95.72%, 97.53%, 96.19%, 96.85%, 99.60%, 99.56%, 

99.75% and 99.80% respectively. The classification performance of each class was estimated using a confusion matrix for the three 

datasets. 
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I. INTRODUCTION

With the rapid improvement of remote sensing 
technologies, large databases of high-resolution RSIs are 
becoming accessible. RSIs have received remarkable 
attention lately. They can be employed in a wide range of 
fields, for instance, urban planning, land surveying, 
computer cartography, geographic image retrieval, and 
others [1]–[4]. A unique label has been assigned to the 
images (e.g., forest or beach) that moved the research of RSI 
classification to more semantic understanding than pixel-
level interpretation [1]. However, the RSI classification 
problem's challenge is the different orientations and scales of 
the objects; and the scene images often highly complex 
spatial structures with similar interclass and intraclass 
variability. Due to these challenges, there have been 
increased past years, and researchers have proposed various 
approaches to solve scene classification problems [5]–[16]. 

Recently, the massive success of feature representation of 
various convolutional ConvNets has been inspired by the 
computer vision community [17]–[22], many ConvNet 
models have been introduced for RSI classification [23]–
[27]. The ConvNet models (e.g., ResNet [28], GoogleNet 
[29], VGG16 [30], and AlexNet [31]) can accomplish more 
excellent classification performance since pre-trained 
ConvNet can extract more illustrative features compared to 
the traditional method (e.g., the intensity of pixel-level 
interpretation or color histogram). The performance of the 
RSI classification can significantly affect the features 
extraction step. These features can be classified into three 
main classes [1]: handcrafted-feature, unsupervised-feature-
learning, and deep-feature-learning methods. 

The handcrafted-feature method (e.g., HOG [32], color 
histograms [33], and GIST [34]) focuses on various 
characteristics, such as texture, shape, and color information. 
The unsupervised-feature-learning method (e.g., K-means 
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clustering [35], autoencoder [36], and LLE [37]) learns 
features automatically from unlabeled input data, and 
remarkable progress has been made by this methods to solve 
a scene classification problem. In more recent years, deep-
feature-learning methods show the extraordinary capability 
of feature representation by automatically learning features 
from the raw input data [38]–[41]. One of many deep-
learning architectures is the ConvNet, which has been used 
for various complex problems such as image classification 
and scene-recognition. The structure of ConvNet consists of 
an input and an output layer, along with a series of hidden 
layers, which are a convolutional (Conv), pooling (Pool), 
and FC layers [1]. The low-level features like corners, lines, 
and edges can be extracted from the first Conv layer. 
Conversely, complex features can be extracted from higher-
level layers; then, the extracted features robust against 
distortion and noise in the Pool layers. In non-linear layers, a 
trigger function such as rectified linear units (ReLUs) is used 
on each hidden layer to indicate the diverse identification of 
likely features. FC layers are used to sum weighting of the 
previous layer of features to determine a precise target result 
[42]. 

Despite the accomplishment of ConvNet, there are many 
challenging RSI classification problems. Some of these 
challenges are the small scale of RSI datasets and different 
real-world conditions (e.g., weather, illuminations, and 
seasons). In addition to the difference in resolutions, object 
poses, viewpoints, and backgrounds. In this paper, three 
fine-tuned ConvNets (GoogleNet [29], ResNet50 [28], and 
VGG16 [30]) have been proposed to improve the 
performance of RSI classification, three approaches of 
ConvNet (GoogleNet [29], ResNet50 [28], and VGG16 [30]). 
The fine-tuned ConvNets have been used to transfer features; 
each of them is fine-tuned on three RSI datasets. Then, we 
extract features from the last fine-tuned FC layer of each 
ConvNets. The classification has been done by using a 
support vector machine (SVM). We evaluate our methods by 
comparing all the results of the fine-tuned models with state-
of-the-art methods. Also, two metrics, the OA and confusion 
matrix, are used for quantitative evaluation.  

A. Scene Classification  

Generally speaking, the existing scene classification can 
be categorized based on features extraction into three 
primary levels: 1) low- level methods can extract simple 
features such as spectral, shape, structure, texture features; 2) 
mid-level methods are suitable to represent the structures of 
complex images; 3) high-level methods can consider the 
most efficient groups for extracting complex textures and 
structures [28]. The ConvNets (high-level feature methods) 
are among the most commonly used deep-learning 
algorithms, so in this paper, we only focus on high-level 
feature methods.  

A pre-trained ConvNets are models that pre-trained on a 
large benchmark dataset as in ImageNet [43]. The 
researchers commonly imported and used models from 
published works (e.g., Nasnetlarge, Squeezenet, Densenet), 
as the computational cost of training these models. Penatti, 
Nogueira, and Dos Santos [44] evaluated the generalization 
ability of ConvNets models (CaffeNet [45] and OverFeat 
[46]), in the scenario of RSI classification. Lately, many 

large RSI datasets have been pre-trained and accomplished 
higher accuracies compared to the low-level and mid-level 
features methods. Examples of these datasets are PatternNet 
[4], NWPU [1], and AID [3]. 

Training the ConvNet models from scratch is another 
group of high-level feature methods, and it can give the most 
control over the network. However, it needs a considerable 
amount of training data to understand the variation of 
features, and the training times are often longer than pre-
trained models.  Some authors examined the performance of 
ConvNets training-from-scratch in the area of RSI 
classification [40], [47]. They found that the classification 
accuracy gets decent compared to the pre-trained ConvNet 
models, though they returned that to the limitation of 
training data.  

Another group of researchers used the fine-tuned 
ConvNet models on the RSIs to elicit features for 
classification [1], [40], [48]. Generally, they used well-
known fine-tuned ConvNet models, and they found the 
accuracies of the classification get much more remarkable 
than both pre-trained ConvNet models and training from 
scratch. A novel technique for "scene classification through 
via networks" was studied by pre-training the network on 
ImageNet and then fine-tuned by the selected datasets [49].  

An alternative technique reprocessed the features 
extracted from the pre-trained ConvNet instead of directly 
used these features. Marmanis et al. [50] offered a two-stage 
classification, a set of reprocessing features were extracted 
from the pre-trained OverFeat and followed by transferring 
them along with their class labels into a supervised CNN 
classifier. Moreover, a linear transformation of deep features 
has been proposed to learn the discriminative convolution 
filter applied to each local patch separately [51]. Also, 
another study [52] obtained intensely local descriptions by 
extracting convolutional features from two RSI datasets by 
using Fisher encoding and Gaussian mixture model 
clustering followed by linear support vector machine (SVM) 
classification [53]. In another work, the deep spatial features 
were studied at multiple scales by extracting them from pre-
trained CNNs[54]. The result of multiple scales is used for 
visual words encoding, correlogram extraction, correlation 
encoding, and classification. 

B. Datasets 

In the past years, different research groups have been 
performed scene classification by introducing several high-
resolution RSI datasets to evaluate other methods in the 
machine-learning field. In this section, the authors will 
briefly review some of these datasets. The number of classes, 
the total number of images in the datasets, the number of 
images per each class, images resolution, and size of images 
are shown in Table 1.  

Most of these datasets imported the images from Google 
Earth Engine, excluding the Brazilian Coffee scene [44] 
dataset cropped from SPOT satellite images. So far, UCM 
[11] has been the most popular and widely used for RSI 
scene classification. However, the authors selected three 
datasets for the experiment in this study, which are NWPU 
[1], AID [3], and PatternNet [4].  
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II. MATERIAL AND METHOD 

The methodology started by presenting the architecture of 
the selected ConvNets. Then, the proposed method consisted 
of three parts, as shown in Fig. 1. The first part fine-tunes 
the pre-trained ConvNets (e.g., GoogleNet [29], ResNet50 
[28], and VGG16 [30]) on the RSI datasets (e.g., NWPU, 
AID, and PatternNet). The second part extracts features from 
the last fine-tuned FC layer. The last part reprocesses the 
second part's features for classification by support vector 
machine (SVM).   

TABLE I 
COMPARISONS OF SOME RSI DATASETS 

Datasets 
No. of  

classes 

Total 

number 

of images 

No. of 

images 

per each 

class 

Size of 

images 

NWPU [1] 45 31,500 700 256 × 256 
SAT_4 & 
SAT_6 [55] 

500,000 (SAT_4) + 405,000 
(SAT_6) patches 

28 × 28 

WHU-RS19 
[56] 

19 1,005 ~50 600×600 

AID [3] 30 10,000 200 - 400 600 × 600 
UCM [11] 21 2,100 100 256 x 256 
RSI-CB256 
and RSI-
CB128 [57] 

35 and 
45 

~24,000 
and 
36,000 

~690 and 
800 

256 × 256 
and 128 × 
128 

RSSCN7 [58] 7 2,800 400 400 × 400 

RSC11 [59] 11 1,232 ~100 512 × 512 
Brazilian 
Coffee [44] 

2 2,876 1,438 64 × 64 

SIRI-WHU 
[10]   

12 2,400 200 200 x 200 

PatternNet [4] 38 30,400 800 256 x 256 

A. Convolution Neural Network Architecture  

GoogleNet [29] is one of the well-known ConvNets 
presented by Szegedy et al. that took first place due to a 
6.67% error rate in ILSVRC2014. It consists of 9 inception 
modules, where each module has 6 Convs layers and 1 Pool 
layer concatenating the outputs to achieve a multi-scale 
features extraction in each module. Each inception module 
runs simultaneously four (1 x 1 Conv), one (3 x 3 Conv), one 

(5 x 5 Conv) with one (3 x 3 pool). The last FC layer 
contains 1024 neurons. 

VGG16 [30] is another representative ConvNet 
architecture proposed by Simonyan & Zisserman that 
won ILSVRC2014. VGG accomplishes the top 5 with  
92.7% accuracy on ImageNet [60]. It has 21 layers, thirteen 
Conv, five Pool, and three FC but only sixteen weight layers, 
and the first input layer is fixed size pixels 224 × 224 with 3 
color channels (red, green, and blue). The filters number of 
Conv1, Conv2, and Conv3 are 64, 128, and 256, respectively, 
whereas Conv4 and Conv5 have 512 filters. The filter size in 
all Conv layers is 3 × 3 pixels, and the stride of the Conv 
process is fixed to 1 pixel. Pool layers follow some of the 
Conv layers; these layers are 2 × 2 pixels with stride 2. The 
first and second FC contains 4096 neurons, while the last 
one contains 1000 neurons.  

ResNet-50 [28] introduced by He et al., achieved the best 
performance on ImageNet in ILSVRC-2015. It has four 
blocks with 3, 4, 6, and 3 such units, respectively. The image 
input size is 224 × 224 pixels with three color channels, 
followed by Conv and Pool layers with 7 × 7 and 3 × 3 
pixels, respectively.  There are three layers in all the three 
units in block one, where each unit consists of 1 x 1 Conv, 3 
x 3 Conv, and 1 x 1 Conv with filter size 64, 64, and 128, 
respectively.  The width of Convs in the final block is 
doubled, and the size of the input is reduced by half. As a 
final point in the network, an average pooling layer followed 
by the FC layer contains 2048 neurons. 

B. Fine-Tuning of Pre-trained ConvNets 

In the first part, the pre-trained network loaded by using 
the deep-learning toolbox model for GoogleNet, ResNet50, 
and VGG16 networks. We explored the network's 
architecture and some details about the network layers by 
using the "Analyze Network" Matlab-Function. We found 
that the first layer in each one of the used networks is the 
image input layer. The size of the images is 224 × 224 for 
the three networks; therefore, the selected dataset images are 
rescaled. For each experiment, the datasets split into 70% for 
the training phase, 30% for the testing phase, as shown in 
Table 2. 

 

 
Fig. 1 Flow chart of the proposed method that consists of three parts: 1) fine-tunes the pre-trained ConvNets on the RSI datasets; 2) features extraction; 3) SVM 
classification. 
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TABLE III 
DATASET SETTING FOR EXPERIMENTAL RESULTS 

DataSet 
Total 

Images 

Training 

(70%) 

Testing 

(30%) 

No. of 

iterations 

per epoch 

Maximum 

iterations   

PatternNet 
[4] 

30,400 21,280 9,120 425 4250 

NWPU  
[1] 

31,500 22,050 9,450 441 4410 

AID [3] 10,000 7,000 3,000 140 1400 
 

The last learnable layers (the fully-connected layer) loss3-
classifier, fc1000, and fc8 in GoogleNet, ResNet50, and 
VGG16 networks respectively replaced with new layers 
(fine-tuned) to retrain the pre-trained networks. The new 
fully-connected layer trained weights are 45, 30, and 38 
according to the number of classes in the selected datasets. 
The final classification layer in the three networks replaced 
with new layers to fit our datasets (output size that equals the 
number of classes in each dataset). After that, to minimize 
the time consuming of the network's training, the earlier 
transferred layers (first ten weighted layers) were set to zero 
by freezing the weights of these layers—finally, the fine-
tuned network used to validate the classification and to 
calculate the classification accuracy. We used ten epochs in 
each experiment, the learning rate and the mini-batch size set 
0.001 and 50, respectively. The number of iterations (I) per 
each epoch and the maximum iterations (Max Iter) is 
calculated using equations 1 and 2. 

 (1) 

 (2) 
                                                  

The second part of our method starts by loading and 
analyzing our fine-tuned networks.  For features extraction, 
some researchers(e.g.,[40] and [44]) extracted an activation 
vector from the last FC layer. Thus, in our experiment, we 
extracted features from loss3-classifier, fc1000, and fc8 in 
GoogleNet, ResNet50, and VGG16 networks, respectively. 
The last part of our method, for the three selected datasets 
SVM using fitcecoc (Statistics and Machine Learning 
Toolbox), is used for training and classification. The training 
and classification were performed to the fine-tuned networks 
using the second part of our method's features. 

The training and testing samples are selected randomly 
for each dataset. The accuracies are reported by repeating 
each experiment ten times and calculating the average. 

C. Experiment Setup and Analysis 

Our experiments are conducted on a Lenovo Y50 laptop 
with Windows 10, 64bit, and MATLAB R2019a, Intel Core 
i7-4710HQ processor with a graphics processing unit (GPU) 
NVIDIA GeForce GTX, CPU (2.50 GHz), and 16 GB RAM. 
We evaluated our proposed method on three public RSI 
datasets, which were: NWPU [1], AID [3], and PatternNet 
[4]. Fig. 2, 3, and 4 show sample images from these datasets 
along with their classes.  

 

 
Fig. 2 Some images from NWPU dataset 
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Fig. 3 Some images from PatternNet dataset  

Fig. 4 Some images from AID dataset 

 
The details of each dataset presented in Table 1. First, to 

evaluate our proposed method, we compared the validation 
accuracy of our fine-tuned ConvNets in the first part of our 
method with previous methods. The experiment is set by 
following the description in [22]; three training-and-testing 

ratios are used in this experiment.  Thus, the AID dataset's 
training ratios are 10% and 50%; the NWPU dataset is 10% 
and 20%. While the training ratios on PatternNet are 10%, 
20%, 50%, and 80%. The reason for that, the authors could 
not find any previous work split PatternNet dataset based on 
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any of these ratios. Therefore, we selected all the training-
and-testing ratios used in our experiment plus 80% vs. 20% 
[22]. For quantitative evaluation, we used two widely 
selected metrics which are OA and confusion matrix. The 
experiments are repeated ten times, and the final 
performance is measured for each training-and-testing ratio. 
Equations (3) and (4) show the OA calculation, where M is 
the number of the correct prediction in the test set, and N is 
the total number of classes in the test set. Furthermore, we 
examine the confusion matrix of the three datasets to 
estimate each class's classification performance where the 
rows represent the actual classes, while the columns 
represent the predicted classes. 
 

 
(3) 

 
(4) 

III. RESULTS AND DISCUSSION 

A. Comparisons with Other Fine-tuned ConvNet Method 

To illustrate our proposed method's effectiveness, we 
compared our results (the validation accuracy of the fine-
tuned networks) with previous methods that have reported 
the classification accuracy on the selected datasets. As 
shown in Table 3, the accuracy values [13], [25] on the AID 
dataset reached 94.42% and 94.3%, respectively, which 
achieved the closest accuracy to our accuracy (94.83%) by 
using fine-tuned ResNet50.  The study presented by He et al. 
[13] suggested a mechanism for the classification and the 
feature learning, where their input is a group of HRRS 
(High-resolution remote sensing) images. Then they 
processed these images by a series of spatial-scale-aware 
blocks to obtain high-level feature vectors for the 
classification. They used two datasets the UCM, and the 
AID, and their work did not test on NWPU and PatternNet 
datasets. A multilayer-stacked-covariance-pooling (MSCP) 
proposed by [25] conducted on three RSI datasets (e.g., UC 
Merced Land Use, AID, and NWPU). They extracted 
multilayer features obtained by AlexNet and VGG16, 
stacked them together, and found a covariance matrix for the 
stacked features. Our fine-tuned GoogleNet and VGG16 on 
the AID dataset could achieve better results compared to the 
study presented by Xia et al. [3]. A multi-branch-neural-
network (MB-Net) consists of four datasets [14]: UC Merced 
Land Use, AID, PatternNet, and NWPU. They learned 
invariant feature demonstrations from several labeled images 
with one unlabeled image. In particular, our fine-tuned 
ResNet50 method boosts the accuracy overall previous 
methods except ResNet50 [15], which achieved the highest 
accuracy of 95.7% on NWPU. 

In comparison, the best accuracy we could achieve on 
NWPU dataset was 94.60% by using fine-tuned ResNet50. 
As can be seen, in general, our method achieved the best 
performance, fine-tuned ResNet50 achieve competitive 
results, even though Fine-Tuned GoogleNet and Fine-Tuned 
VGG16 show the worst results on AID. It is interesting to 
note that the performance on PatternNet is expressively 
better than that on AID and NWPU. 

TABLE IIIII 
COMPARISONS TO THE PREVIOUS METHODS 

Models 
Validation Accuracy 

PatternNet NWPU AID 

HRRS learning strategy 
[13] 

- - 94.3% 

MSCP [25] - 88.93% 94.42 % 
GoogleNet [3] - - 86.39% 
VGG16 [16] - 88.62%  

 

- 
ResNet50 [15] -  95.7% - 
MB-Net [14] 98.05 76.38% 91.46% 
The proposed method 
with Fine-Tuned 
GoogleNet 

96.39% 91.66% 88.40% 

The proposed method 
with Fine-Tuned 
VGG16 

98.83% 91.10% 89.63% 

The proposed method 
with Fine-Tuned 
ResNet50 

99.54% 94.60% 94.83% 

B. Comparisons with Other Classification Methods 

Further comparisons have been made based on three 
different training-and-testing ratios on the selected datasets. 
The training-and-testing ratios on AID are 20% and 50% for 
training, 80% and 50% for testing. On NWPU are 10% and 
20% for training, 90% and 80% for testing, respectively. The 
training-and-testing ratios on PatternNet are 10%, 20%, 50%, 
and 80% for training; 90%, 80%, 50% and 20% for testing 
respectively. Table 4 reported the mean accuracy and 
standard deviation for each training-and-testing ratio over 
ten times. Also, comparisons of different techniques using 
similar training-and-testing ratios are also reported. Saliency 
Two-Stream Network (SAL-TS-Net) was derived from fine-
tuned pre-trained GoogleNet extracted features from the last 
Pool layer and used Extreme Learning Machine (ELM) 
classifier. SAL-TS-Net computes the means and standard 
deviations under different training-and-testing ratios. 

TABLE IVV 
COMPARISONS OF CLASSIFICATION RESULTS ON AID AND NWPU 

DATASETS ACHIEVED IN THIS STUDY WITH VERY RESENT RSI 

CLASSIFICATION METHODS [22, 25]  

Model 

OA (mean ± standard deviation) 

AID NWPU 

20% 50% 10% 20% 

SAL-TS-Net [22] 
94.09±0.
34 

95.99±0.
35 

85.02±0.
25 

87.01±0.
19 

VGG16+MSCP+
MRA [25] 

92.21±0.
17 

96.56±0.
18 

88.07±0.
17 

90.81±0.
13 

GoogleNet + 
SVM 

92.02±0.
97 

94.53±0.
97 

93.27±0.
39 

94.55±0.
47 

VGG16 + SVM 
95.21±0.
91 

97.19±0.
72 

96.19±0.

49 

96.85±0.

72 

ResNet50 + SVM 
95.72±0.

99 

97.53±0.

80 
95.61±0.
57 

96.59±0.
38 

 
VGG16+MSCP+MRA [25] is used a pre-trained VGG16 

to extract multilayer feature plus "multiresolution analysis to 
improve classification accuracy" (MRA) further. The 
extracted features are stacked together and classified by 
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SVM. As shown in Table 4, the methods by previous studies 
[22], [25] are slightly better than our approach using 
GoogleNet+SVM on AID. However, our methods 
(VGG16+SVM and ResNet50+SVM) showed better 
classification or competitive performance on the same 
dataset, and the best results are marked in bold. All the 
proposed methods on NWPU outperform the results by 
previous studies [22], [25].  

TABLE V 
COMPARISONS OF CLASSIFICATION RESULTS BASED ON DIFFERENT 

TRAINING-AND-TESTING RATIOS ON PATTERNNET DATASET 

Model 

OA (mean ± standard deviation) 

PatternNet 

10% 20% 50% 80% 

GoogleNe
t + SVM 

98.53±0.7
0 

99.02±0.7
4 

99.08±0.5
7 

99.54±0.3
0 

VGG16 + 
SVM 

99.60±0.2

6 

99.52±0.3
8 

99.57±0.3
4 

99.73±0.1
8 

ResNet50 
+ SVM 

99.52±0.3
0 

99.56±0.4

4 

99.75±0.1

5 

99.80±0.1

4 

 
In Table 5, different training-and-testing ratios on the 

PatternNet dataset are summarized; however, we could not 
find any previous method to compare.  Yu and Liu [22] used 

50% and 80% training ratios on UCM dataset, and we 
followed the split techniques [22] for the PatternNet dataset. 
Considering the PatternNet dataset compared to the UCM 
dataset, we added additional training ratios (10% and 20%) 
on PatternNet dataset. All the proposed method that applied 
to PatternNet dataset present a very high accuracy of 98.53- 
99.80. 

C. Confusion Analysis 

In this section, the confusion matrix and the classification 
accuracy are reported for each class in the selected datasets. 
Considering the limitation of the article space, we only show 
the confusion matrixes for the AID dataset 50% training 
ratio using the ResNet50+SVM, for NWPU dataset, 20% 
training ratio using the VGG16 + SVM, which are the best 
method achieved on these datasets. However, for the 
PatternNet dataset, 10% training ratio using 
GoogleNet+SVM is selected, which is the lowest result we 
got in the chosen dataset.  

There are 27 among 30 AID classes that have 
classification accuracies higher than 0.95; the classification 
accuracies of the beach, desert, mountain, parking, pond, 
river, and viaduct can reach 1, as shown in Fig. 5 

 

 
Fig. 5 Confusion matrixes for AID dataset with 50% training ratio by using the ResNet50+SVM 

 
Also, bare land, baseball field, bridge, dense residential, 

forest, meadow, medium residential, and the stadium can 
reach 0.99. This method can acquire good performance in 
some categories that are challenging to distinguish. For 
example, from the results gained by using MSCP+VGG16 
[25], they got low accuracies under some scene-categories, 
such as center (0.85), resort (0.82), school (0.85), square 
(0.89), industrial (0.89), and park (0.86). Our classification 
accuracy for the same scene-categories are boosted, where 

center (0.93), resort (0.91), school (0.95), square (0.98), 
industrial (0.96) and park (0.97). 

For the NWPU dataset, 36 among 45 classes can achieve 
the classification accuracy exceeding 0.95; precisely, the 
beach, chaparral, circular farmland, forest, harbor, snowberg, 
storage tank, and thermal power station can get classification 
accuracies 0.99-1. The confusion matrix for VGG16 + SVM 
is present in Fig. 6 compared with the one present using 
texture-coded two-stream with the fusion model [22] under 
the same training-and-training ratio.  
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Fig. 6 Confusion matrixes for NWPU dataset with 20% training ratio by using the VGG16+SVM 

 

 
Fig. 7 Confusion matrixes for PatternNet dataset with 10% training ratio by using the ResNet50+SVM 
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For instance, the low accuracy under baseball diamond, 
basketball court, church, commercial area, dense residential, 
freeway, industrial area, medium residential, palace, railway 
station, river, tennis court and wetland scene-categories were 
0.81, 0.73, 0.64, 0.76, 0.80, 0.73, 0.75, 0.77, 0.61, 0.78, 0.80, 
0.72 and 0.77 respectively by [22] and 0.98,0.97, 0.94, 0.96, 
0.96, 0.94, 0.94, 0.94, 0.89, 0.91, 0.96, 0.98 and 0.91 
respectively by the proposed method.  

Fig. 7 presents the confusion matrix for the PatternNet 
dataset using the ResNet50+SVM under the training ratio of 
10%. 19 among 38 scene-categories can accomplish the 
classification accuracy equal 1; another 14 scene-categories 
among 38 can achieve the classification accuracy between 
0.98-0.99. The lowest accuracies we got by using 
GoogleNet+SVM on ferry terminal (0.87), nursing home 
(0.90), sparse residential (0.94), and basketball court (0.96). 

IV. CONCLUSION  

This paper proposed supervised feature learning based on 
pre-trained ConvNet (e.g., GoogleNet, VGG16, and 
ResNet50) for RSI classification. The proposed method was 
first fine-tuning the pre-trained ConvNets on three publicly 
available RSI datasets: NWPU, AID, and PatternNet. Then, 
we extracted the features from the last fine-tuned FC layer. 
Finally, we reprocessed the extracted features for 
classification by using SVM. Comprehensive experiments 
and comparisons conducted with previous approaches 
confirm the efficiency of the proposed methods. Our best 
result, by fine-tuned ResNet50, can achieve 99.54%, 94.60%, 
and 94.83% on the PatternNet, NWPU, and AID datasets, 
respectively. Furthermore, our best classification accuracies 
were 95.72%, 97.53%, 96.19%, 96.85%, 99.60%, 99.56%,  
99.75% and 99.80% with training ratios 20% and 50%  on 
the AID dataset, 10% and 20% on the NWPU dataset, and 
the 10%, 20%, 50% and 80% on PatternNet dataset, 
respectively. Then, we used a confusion matrix to estimate 
each class's classification performance for the three datasets. 
According to the confusion matrix, the classification 
accuracy of 15, 8, 28 classes from AID, NWPU and 
PatternNet dataset could reach more than 0.99. Besides, we 
raise some challenging classes from AID and NWPU 
datasets compared to the same classes proposed by [22] and 
[25]. 

On the other hand, we could not find any previous work 
reports on the confusion matrix of the PatternNet dataset; 
therefore, we just report our confusion matrix. In the future, 
we are planning to extend our method by testing other 
ConvNets and classification methods on RSI. Also, we are 
planning to merge the same classes of the RSI datasets to 
explore the impact on learning and classification. 
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