and forms at higher temperatures and has a body center crystal structure cubic (bcc). Phase changes α to γU phases are carried out by heating or adding metal elements at high temperatures then cooled to room temperature. Through the addition of metal elements at high temperatures, the γU phase formed at high temperatures will remain even though the alloy temperature is cool. A change also follows this phase change in the crystal structure from the original phase α has an orthorhombic structure that will change to the γU phase, which has a cubic structure. Meanwhile, UO2 compounds are formed due to the oxidation of the U-Zr-Nb sample either during the hydriding-dehydriding process or after the hydriding-dehydriding process, where the U-Zr-Nb sample is stored in an open place and in contact with air. Fig. 6 Phase composition with Nb variation content in the U-Zr-Nb powder When compared with U-6Zr-2Nb, U-6Zr-5Nb, and U-6Zr-8Nb alloys in the form of ingots (before hydridingdehydriding), it can be seen that U-6Zr-2Nb alloy ingots have αU and γU phases, ingot alloy U-6Zr-5Nb has αU , γU , and $\delta 1$ (UZr2) phases, U-6Zr-8Nb alloy ingots have αU , γU , and $\delta 1$ (UZr2) phases. Both U-6Zr-5Nb alloys, both ingots and powders have the same phases of U when in the same conditions. The αU phase appears at an angle of 2θ respectively at 35.4, 38.6, 52.05, and $\,$ 65.01 $^{\circ}$, the γU phase formed at an angle of 2θ respectively at 35.64, 59.8, and the 76 ° while phase $\delta 1$ (UZr2) is formed at an angle of 2θ at 26.67 °. The results are not different from the two forms, namely powder, an ingot, where they produce the αU and γU phases. Both of these results are also following previous research of making U-Zr-Nb alloys that obtained αU , γU , and δ1 (UZr2) phases[15],[16]. ## IV. CONCLUSION The results of the analysis of U content in the U-6Zr-2Nb, U-6Zr-8Nb alloy powder samples were 89.307, 85.568, and 83.553 wt%, while the Zr content analysis obtained successive results amounted to 6.220, 5.829, and 6.192 wt%. Meanwhile, in the analysis of Nb in U-6Zr-2Nb alloy powder, U-6Zr-5Nb, U-6Zr-8Nb obtained successive results amounted to 2.023, 5.04, and 8.155 wt%. The recovery results on each U-6Zr-2Nb alloy powder, U-6Zr-5Nb, U-6Zr-8Nb between 96.144 to 99.833 %, and a low accuracy rate between 0.002 to 0.029 %. From the analysis of impurity elements, it was found that the elements Al, Mn, Cu, and Fe exceeded the requirements. The phase analysis results were obtained for each sample U-6Zr-2Nb, U-6Zr-5Nb, U-6 8Nb contained αU , γU , and UO_2 compounds, where the γU phase was the dominant phase. The highest γU phase content is found in U-6Zr-5Nb, which is 92.108 wt%, and after the Nb content exceeds 5 wt%, the greater addition of Nb does not increase the number of γU phases formed. ## ACKNOWLEDGMENTS The authors are grateful to colleagues at PTBBN who provide support for this research. We are obliged to Mr. Slamet P, Mr. Y D. Agus, and Ms. Yanlinastuti. Mr. Y D. Agus, who helped manufacture U-Zr-Nb powder, Mr. Slamet who helped in the phase analysis, and Ms. Yanlinastuti helped in the analysis of the composition element. ## REFERENCES - [1] Supardjo, H. Suwarno, and A. Kadaryono, "Characterization of U-7% Mo and U-7% Mo-x% Si alloys (x = 1, 2, and 3%) results from the melting process in the electric arc furnace," *J. Urania*, vol. 15, no. 4, pp. 171–232, 2009. - [2] Masrukan, D. Mustika, D. A. Perdana, and Jumaeri, "Analysis of elemental composition, density, macrostructure, and phase formation of U-6Zr-xNb alloy post corrosition test," *J. Urania*, vol. 26, no. 3, p. 155, 2020. - [3] S. Kaity, J. Banerjee, S.C Parida, and V.Bahsin, "Structural, microstructural, and thermal analysis of U-(6-x)Zr-xNb alloys (x-2,4,6)," J. Nucl. Mater., vol. 504, pp. 234–250, 2018. - [4] Masrukan and J. Setiawan, "Ingot characteristic of U-Zr-Nb alloys post quenching process," J. Urania, vol. 23, no. 2, pp. 87–96, 2017. - [5] Nathanael Wagner Sales Morai, Denise Adorno Lopes, and Cláudio Geraldo Sc, "Effect of thermo mechanical processing on microstructure and mechanical properties of U Nb Zr alloys," *J. Mater.*, vol. 502, pp. 51–59, 2018. [6] R. Mariani et al., "Initial evaluation of fuel-reactor concepts for - [6] R. Mariani et al., "Initial evaluation of fuel-reactor concepts for advanced LEU fuel development," in INL/EXT-20-54641, 2020. - [7] Suryanarayana, "Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials," Res. (Wash D C), vol. 2019, 2019. - [8] M. Masrukan, M. H. Alhasa, and E. Yusnitha, "Fabrication of Fuel Element Core (FEC) of U-6Zr-5Nb/Al to be Fuel Element Plate (FEP) with variation of uranium density," *J. Mater. Res. Tecnol.*, vol. 10, no. February, pp. 216–224, 2021. - [9] B. Beeler, Y. Zhang, and M. Okuniewski, "Calculation of the displacement energy of α and γ uranium," J. Nucl. Mater., vol. 508, 2018. - [10] A. da S. Ferreira, F. R. Longe, R. A. M. Gotardo, Flávio Francisco Ivashita, Reginaldo Barco, and Andrea Paesano Júnior, "Synthesis and Structural Charac terization of U-Zr-Nb Alloys," *J. Mater. Res.*, vol. 21, no. 1, 2017. - [11] N. W. S. Morais, A. Lopes, and C. G. Schon, "Effect of thermomechanical processing on microstructure and mechanical properties of U Zr alloys: Part 1 U-6 wt. % Nb –6 wt. % Zr," *J. Nucl. Mater.*, vol. 488, pp. 173–180, 2017. - [12] B.M.Aguiar, "Refining U-Zr-Nb Alloys By Remelting," in International Nuclear Atlantic Conference (INAC) Belo Horizonte, 2011. - [13] M. Masrukan, Yanlianastuti, M.H.Al Hasa, and Arief Sasongko Adhi, "Analysis of composition, density, thermal properties of U-Zr-Nb alloy powder for nuclear fuel," J. Phys., vol. 1198, no. 3, 2019. - [14] W. Chen and X.-M. Bai, "Temperature and composition dependent thermal conductivity model for U-Zr alloys," J. Nucl. Mater., vol. 507, pp. 360–370, 2018. - [15] S. Kaity, J. Banerjee, S. C. Parida, and V. Bhasin, "Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)," *J. Nucl. Mater.*, vol. 504, pp. 234–250, 2018. - [16] Y.Park, R.Newell, A.Mehta, D.D.Keiser Jr, and Y.H.Sohn, "Interdiffusion and reaction between U and Zr," *Journal Nucl. Mater.*, vol. 504, pp. 42–50, 2018.