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Abstract— Ant colony optimization (ACO) is a well-known algorithm from swarm intelligence that plays an essential role in obtaining 

rich solutions to complex problems with wide search space. ACO is successfully applied to different application problems involving 

rules-based classification through an ant-miner classifier. However, in the ant-miner classifier, rule-pruning suffers from the problem 

of nesting effect origins from the method of greedy Sequential Backward Selection (SBS) in term selection, thereby depriving the 

opportunity of obtaining a good pruned rule by adding/removing the terms during the pruning process. This paper presents an 

extension to the Ant-Miner, namely the genetic algorithm Ant-Miner (GA-Ant Miner), which incorporates the use of GA as a key aspect 

in the design and implementation of a new rule pruning technique. This pruning technique consists of three fundamental procedures: 

an initial population Ant-Miner, crossover to prune the rule, and mutation to diversify the pruned classification rule. The GA-Ant 

Miner performance is tested and compared with the most related ant-mining classifiers, including the original Ant-Miner, ACO/ PSO2, 

TACO-Miner, CAnt-Miner, and Ant-Miner with a hybrid pruner, across various public available UCI datasets. These datasets are 

varied in terms of instance number, feature size, class number, and the application domains. Overall, the performance results indicate 

that the GA-Ant Miner classifier outperforms the other five classifiers in the classification accuracy and model size. Furthermore, the 

experimental results using statistical test prove that GA-Ant Miner is the best classifier when considering the multi objectives (i.e., 

accuracy and model size ranks).  
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I. INTRODUCTION

Data mining, also known as knowledge discovery, is the 

operation of unveiling hidden insights from data. Different 
institutions and companies consider it as the most crucial 

opportunity to raise revenue. Data mining is widely used in 

various fields, such as medicine, science, recognition, 

business, and engineering [1]. In data mining, two types of 

learning are available: supervised techniques and 

unsupervised learning approaches [2]–[6]. Unsupervised 

learning techniques discover patterns from data. These 

techniques work without any previous knowledge from the 

data (i.e., unlabeled class) [7]–[10]. 

Conversely, supervised learning techniques use labeled 

data to build the data mining model [11]. Such techniques can 

be considered a powerful approach with an accurate and rapid 
result in a wide range of applications (e.g., businesses). One 

of the supervised learning techniques that gains significant 

attention is the rules-based classification which extracts 

classification rules from the data. One of the prominent 

algorithms used for rules-classification is ant colony 

optimization (ACO) for rules classification of Ant-Miner 

variants [12], [13]. The Ant-Miner produces a comprehensive 

classification model by finding a list of classification rules 

fashion (IF-THEN) from the data. The advantages of these 
rules can be easily translated to natural language. 

The Ant-Miner [14] is inspired by the real behavior of an 

actual ant colony. The Ant-Miner is a metaheuristic, swarm-

based, stochastic, and separate-and-conquer approach. This 

consisted of three major stages, namely, rule building, 

pruning rule, and updating pheromone. In the rule building 

stage, each specific ant begins to add terms to be included in 

the rule. This term acts as a particular duo (attribute and value) 

from the attribute in the dataset, and each term can be added 

only once under the building rule. The Ant-Miner classifier 
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adds terms that increase classification performance according 

to its pheromone concentration and amount of information.  

In rule pruning, the overfitting problem can be avoided by 

decreasing the length and increasing the constructed rules' 

simplicity. The procedure removes one term at a time whilst 

enhancing quality. The pruning repeats until improvement 

ceases. The pheromone update has two main stages: updating 

the pheromone amount for all terms in the current rule based 

on its quality and updating all terms that do not appear in the 

current rule.  

The Ant-Miner pruning technique has the nesting effect 
originating from a greedy sequential backward selection 

method in feature selection. The pruning starts from a 

complete set of terms and erases one term at a time with no 

ability to add the eliminated terms again. It deprives the 

opportunity to obtain a good pruned rule to restoring the 

removed terms [15]–[18]. This paper proposes a new pruning 

technique based on the genetic algorithm's search behavior 

(GA) to find the optimal pruning rule and introduce a new 

rules-classification algorithm called the GA-Ant Miner. The 

GA-AntMiner has a flexible rule pruning technique for 

adding/dually removing the terms. 

II. MATERIAL AND METHOD 

A. Implementation of GA-Ant Miner Classifier 

The GA-Ant Miner classifier begins to discover one 

classification rule from training instances. This discovered 

rule is then inserted in the rule list, in which every instance 

covers this rule antecedent and have class predicted by the 

consequent rule are removed from the training instances set. 

These operations stop when all the training data cases are 

lower than the prespecified constant values knows as the 
maximum number of uncovered cases. This approach has 

three major stages, called rule building, pruning rule, and 

updating pheromone.  

The initial procedure is the construction rule, where every 

ant begins to insert terms to be included in the rule. The ant 

inserts one term to improve the classification accuracy 

according to its probability value. The probability of each 

term to be selected in the particular rule is provided by 

Equation (1) [19] as follows:  
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term at iteration (t);  �ƞ ! � 
is the problem depending upon 

heuristic function; a is the attribute number in the dataset; bi 

is the number of different values for each attribute; and xi 

equal to 1 (while the attribute is not yet used by the current 

ant); or 0 (otherwise).  The heuristic amount and the 

pheromone amount are used to decide on the term selected. In 

the GA-Ant Miner, the heuristic function is inspired by 

information theory. The GA-Ant Miner computes the amount 

of information contained in each term (entropy). The heuristic 

function is given by Equations (2) and (3) [19], as follows: 
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where w is the class attribute, and k is the class number; 

P <=>?5 
  @5A B  is the instances partition, where: each 

attribute Ai has values Vij with from class w. |Tij| is the total 

number of instances in partition Tij and a present the total 

attributes number. bi is the values number in the particular of 

attribute i. This process is repeated, while specific attributes 

are not used yet, or the prespecified minimum number of 

uncovered instances by the constructed rule. Once the rule is 

completed, the classifier chooses the (then) part of the rule by 

assigning the majority class among the instances covered by 

the rule. 
This study proposed a new pruning technique using the GA 

concept. Three algorithmic components are added (population 

initialization, crossover, and mutation) in the proposed 

technique. The modification aims to minimize the number of 

terms in the discovered rule and maximize the classification 

accuracy. The pruning technique's algorithmic components in 

the GA-Ant Miner classifier are population initialization, 

crossover, mutation, updating of instance list, determination 

of consequent rule, calculation of rule quality, and stopping 

criteria. The GA-Ant Miner generates the classification rule 

as an integer 1D array with a size equal to the number of 

features in the dataset and consists of two components. In the 
first component (antecedent), each bit is associated with the 

dataset feature. If the bit of this array equals a positive integer 

number, then one term of that feature can participate in the 

classification rule. Otherwise, if the bit of this array equals a 

negative value, then the terms of that feature are excluded. 

Meanwhile, the second component represents the 

classification class label. In population initialization, the 

proposed technique is to add a 1D array (rule) of negative 

values in all elements with the same size as the original rule, 

as described in Fig. 1.  

 

 
Fig. 1  Chromosome of Genetic-based post pruning technique 

 

The term elimination processes occur implicitly through 

crossover and mutation between the two chromosomes, and 

each eliminated term can be re-added. The crossover operator 
is how parent chromosomes (rules) exchange genetic 
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information to create the best pruning rule. The crossover rate 

parameter is performed to decide if the rules should have a 

crossover. The parameter of the crossover rate is compared 

with a random number to perform the crossover operation. 

Besides, different methods are used for trading genetic 

information between two individuals. The crossover 

operation used in this study includes two single-point 

crossover operations. The first point is the first term in the rule, 

while the second point corresponds to the high correlation 

term that improves the pruning rule quality. The pseudocode 

(Fig. 2) of the crossover method is implemented as follows: 
 
Crossover Pseudocode 

 
FOR each term in the rule  
        IF CrossoverRate > Random (); 

         FirstTerm = SelectFirstTerm(); 
         SecondTerm= SelectSecondTerm(); 
         Offspring = Crossover (FirstTerm,  
         SecondTerm, FirstParent, SecondParent); 
    ELSE: Offspring= (FirstParent, SecondParent); 

    END IF  
END Loop  

Fig. 2  Crossover operator pseudocode 

 

A mutation operator is used to maintain genetic diversity 

from one generation of a rule pruning to the next. The 
mutation rate parameter is used to perform mutation in a 

similar approach to the crossover operator. If the mutation rate 

is greater than the random number, then each gene has an 

equal chance of being mutated during the mutation stage. The 

mutation operator selects a random bit in the parent 

chromosomes and flips the value of this bit. Fig. 3 shows the 

pseudocode of the mutation operator. Besides, examples of 

two single point crossovers, and one single point mutation 

operator used in the pruning technique are shown in Fig. 4. 

 
Mutation Pseudocode   

  
IF MutationRate > Random (); 

     MutatedTerm = SelectMutatedTerm(); 
     Offspring = Mutation (MutatedTerm,FirstParent,  

     Second Parent); 
ELSE: Offspring= (FirstParent, SecondParent); 
END IF  
 

Fig. 3  Mutation operator pseudocode 

 

The number cases covered by the pruning rule are checked 

using the update instance list procedure. If the number of 

instances changes, then the classifier selects the consequence 

(‘then’ part) of the rule by giving the majority class that 
appears in the cases covered by the rule. The quality of the 

original rule is compared with the pruned one. If the pruning 

rule's quality is higher than the uprunning rule, then the 

former rule takes the place of the original one. This process is 

iterated until the termination condition, which is a fixed 

number of the eliminations using crossover and mutation 

operators, is satisfied. 

 

 
Fig. 4  . Crossover operation with two single points and mutation operation with one single point 

 
 

The pheromone is updated after rule construction and 

prune procedures. The approach of pheromone update has two 

main procedures. Firstly, growing the pheromone for all terms 

that occurs in the construction rule according to rule quality 

by Equations (4) and (5) [19]. 

 τ#$�STL� 
  τ#$�S� U  τ#$�S� . V (4) 
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Where TP represents the true positive instances; FN 

represents the false-negative instances; TN represents the true 
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negative instances; and FP represents the false-negative 

instances. Secondly, evaporating each term does not represent 

in the constructed rule by normalizing unused terms. Another 

rule will be built by another ant derived from the updated 

pheromone amount. The process is accomplished based on the 

following stopping conditions are satisfied. In the first 

condition, the number of discovered rules must be equal to the 

number of ants. According to the number of the rule 

convergence that statically determined, the second condition 

is where the ant converges to a particular rule by building one 

precisely the same as previously constructed. The best rule 

constructed will be added to the list of discovered rules. Fig. 

5 displays a high-level pseudocode of the GA–Ant Miner 

algorithm.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 5  GA-Ant Miner pseudocode 

 

B. Experiments 

A 10-fold cross-validation procedure is used to evaluate the 

anti-mining classification algorithms. In this procedure, the 

dataset is split into ten groups. Each group is equally sized, 

where nine groups are used for the training process. The 

remaining group is used in the testing stage. This process is 

repeated ten times with a different group for training and 

testing to ensure that all groups are used. Subsequently, the 

performance of all folds is averaged, and the standard 

deviations are computed. The well-known 10-fold cross-
validation technique is used in other anti-mining classifier 

studies [20], [21]. 

C. Performance Evaluation  

The evaluation is performed based on three criteria. Firstly, 

the classification accuracy in discovering the rule list is called 

the accurate classification rate. This criterion is based on the 

accurately classified instances in the test data. Each time, the 

training subsets consist of n number of instances, and the 

classifier constructs the training and test subsets that are used 

to test the performance. The accurate classification instances 
determine the performance of the proposed classifier. 

Secondly, the size of the rule list is computed by the number 

of terms in the constructed rules. The term number (conditions) 

refers to the number of antecedents carried by each rule. 

Thirdly, the algorithms' performance in the classification 

accuracy against the complexity of the model is observed. The 

average rank of classification accuracy and model size is used 

in our experiments. A low rank implies good algorithm 

performance. 

 

 

GA-AntMiner as post-pruning technique 

 
Input: arff dataset 
Output: classification rule  
 

1 Training Database = {all instances}; 
2 RuleList Initialization =[]; 
3 WHILE(Training Database > MaxNumber of uncovered instances) 
4 Ant Number=1;  

5 Convergence Number=1; 
6 Pheromone Initialization(); 
7 REPEAT  
8 RuleConstructs; 
9  

// Genetic-based pruning technique start here 

10 PopulationInitialization; 

11 While (termination condition not met);  

12 Crossover;  

13 Mutation;  

14 UpdateInstancesList; 

15 DetermineRuleConsequent; 

16 EvaluateRule; 

17 IF Quality ( PruneRule ) > Quality (Rule); 

18 Rule= PruneRule; 

19 End IF 

20 END-WHILE 

// Genetic-based pruning technique end here 
21 Pheromone Updating (); 
22 IF (Current constructed rule=Previous constructed rule) 
23 THEN Convergence index number = Convergence index number + 1; 
24 ELSE Convergence index number t = 1; 
25 END IF Ant number = Antnumber + 1;  
26 UNTIL (Ant number>=limit number) OR (Convergence index number >= Rule Convergence limit) 
27 Best rule selection (); 

28 Add Best rule to Discovered ruleList (); 
29 Training Database = Training Database - {Instances Covered by Best rule}; 
30 END-WHILE 
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D. Databases  

Benchmark datasets are used to compare the proposed 

algorithms with the commonly related ant-mining 

classification algorithms in the literature. Benchmark datasets 

are selected in accordance with the ant-mining literature. This 
benchmark includes secondary datasets selected from UCI 

[22]. The datasets diverse in terms of the number of instances 

(lie between the range of 150–8124), attributes (range of 4–

60) and class labels. In addition, the attributes consist of 

categorical and continuous types.  

The selected datasets are as follows: Balance Scale, Breast 

Cancer (Ljubljana), Breast Cancer (Wisconsin), Credit-a, 

Credit-g, Diabetes, Heart (Cleveland), Heart (Stat log), 

Hepatitis, Ionosphere, Iris, Lymphography, Mushroom, 

Segment, Sonar, and Tic-Tac-Toe. The main features of each 

dataset are summarized in Table 1. The features include the 
name of datasets, number of instances, number of attributes, 

number of values in each class attribute, and type of attributes. 

 
TABLE I 

MAIN DATASET FEATURES IN THE EXPERIMENTS 

Data Sets 

Name 

Attributes 

Number 

Instances 

Number 

Type of 

Attributes 

Classes 

Number 

Balance Scale 4 625 Categorical 3 

Breast Cancer 

(Ljubljana) 
9 286 Categorical 2 

Breast Cancer 

(Wisconsin) 
9 699 Continuous 2 

Credit/A 

Dataset 

15 690 Categorical, 

Continuous 

2 

Credit/G 

Dataset 

20 1000 Categorical, 

Continuous 

2 

Diabetes 

disease 

8 768 Continuous 2 

Heart/Clevelan

d disease 
13 303 

Categorical, 

Continuous 
5 

Heart/Statlog 

diabetic disease 

13 270 Categorical, 

Continuous 

2 

Hepatitis 

disease 
19 155 

Categorical, 

Continuous 
2 

Ionosphere 

dataset 

34 351 Continuous 2 

Iris dataset 4 150 Continuous 3 

Lymphography 

medical 

imaging 

18 148 
Categorical, 

Continuous 

4 

Mushroom 

dataset 
22 8124 Categorical 2 

Segment 

dataset 

19 2310 Continuous 7 

Sonar dataset 60 208 Categorical, 

Continuous 

2 

Tic/tac/toe  9 958 Categorical 2 

E. Classifiers  

The compared classifiers include the original Ant-Miner, 

CAnt-Miner, ACO/PSO2, Ant-Miner with a hybrid pruner, 

and TACO-Miner. The first classifier is CAnt-Miner, an Ant-

Miner version and can handle continuous attributes during 

training model construction [23]. ACO/PSO2 is a hybrid 

swarm intelligence metaheuristic algorithm for rules-based 

classification. The pruning procedures of ACO/PSO2 are 

applied to discover the best rule for each iteration. ACO/PSO2 

uses two pruning procedures. The first procedure is the 
original Ant-Miner pruning procedure and applied to the best 

rule discovered a whose number of terms is less than 20. If the 

constructed rule entails more than 20 terms for each rule, then 

the pruning iterates to remove the unimportant or detrimental 

terms from the classification rule until the number is 

decreased to 20 terms. 

The Ant-Miner pruning procedure is then implemented 

subsequently [24]. The TACO-Miner classifier consists of a 

predefined value of threshold criterion based on each term's 

information gain. If the information gain value related to the 

term is lower than the threshold value, the term is declined in 

the inclusion process [25], [26]. The threshold is considered a 

preprinting criterion and used to accept or reject terms. On the 
other hand, the ant-miner with a hybrid pruner introduces a 

new rule into the pruning procedure and entails the 

hybridization of the original Ant-Miner’s rule pruner with 

another rule pruner the basis of two aspects. The aspects are 

the information gain of terms and a new parameter to 

determine the acceptable number of terms to be included in 

the rule called r. The first procedure is utilized for each rule 

that overrides the number of acceptable terms allowable in a 

rule. The number of terms in the selected rule is then reduced 

until its value reaches the value of r. This selection method is 

executed based on the roulette wheel technique and the value 
of each term's information gain. After that, the second 

procedure, which is the Ant-Miner's same prune ring 

procedure, is applied [27]. 

F. Parameter Setting  

This subsection introduces the parameter values used in all 

experiment steps adopted to ensure fair comparison results 

when each classifier works with similar parameter values 

[28]–[30]. The list of parameters used for all classifiers are 

listed in Table 2. 

TABLE II 

EXPERIMENTAL PARAMETERS 

Parameter Description Value 

Ant Number Total number of ants 10 
MICR Mini instances number covered by 

the rule 
5 

MI Max instances number not covered 
by the rule 

10 

Convergence 

Number 

Convergence limit number 10 

Iteration 
Number 

Iteration number 10 

� Beta 1 Z Alpha 1 

CR Crossover Rate 0.8 
MR Mutation Rate  0.1 

III. RESULTS AND DISCUSSION 

This section compares the GA-AntMiner classifier results 

with those of related classifiers with different rule pruning 

procedures. These classifiers are the original Ant-Miner, 

CAnt-Miner, ACO/PSO2, TACO-Miner and Ant-Miner with 

a hybrid pruner. Experiments on 16 datasets from the UCI 

repository are conducted for all classification algorithms. The 
experiments use 10 folds of the cross-validation technique 

based on the previous section's benchmark scenarios. In the 

first method, Tables 3 and 4 show the experimental results of 

the average classification accuracy and model size. The first 

308



row presents the average classification accuracy in each table 

and the standard deviations after the symbol “+/−.” For each 

table in the experiment, the best result is clarified in bold. The 

second row displays the performance rank for each dataset. 

The experimental results in Tables 3 and 4 are used to 

determine the best classifiers. 

Table 3 shows that the GA-Ant Miner is better than the 

Ant-Miner in all datasets. The GA-Ant Miner is better than 

TACO and hybrid pruner in 15 datasets. Furthermore, the 

GA-Ant Miner outperforms the CAnt-Miner and ACO/PSO2 

in 13 and 12 datasets, respectively. In comparison with other 
classifiers, the GA-Ant Miner achieves the highest result in 

10 datasets. The GA-Ant Miner obtains the second-best 

performance in four datasets (Credit-g, Diabetes, Segment 

and Tic-tac-toe). The second-best classifier is ACO/PSO2 

with three datasets. The CAnt-Miner achieves the best result 

in two datasets, and the TACO classifier obtains the best 

result in one dataset. The Ant-Miner and hybrid pruner 

acquire the lowest results across all datasets. 

Table 4 shows that the GA-Ant Miner achieves the better 

result for model size in all datasets in comparison with the 

Ant-Miner classifier. By using the same token, the GA-Ant 

Miner achieves the best result in 15 datasets compared with 

the CAnt-Miner and hybrid pruner classifiers. The GA-Ant 

Miner gains over 14 datasets in contrast to ACO/PSO2. 

However, the GA-Ant Miner and TACO classifiers are like 

the highest result in eight datasets. In comparison with other 

classifiers, the GA-Ant Miner achieves the best result in nine 

datasets. The GA-Ant Miner obtains the second-best result in 

four datasets (Balance Scale, Heart-Cleveland, Heart-Stat log, 

and Mushroom). The second-best classifier is TACO with 

five datasets. ACO/PSO2 and the CAnt-Miner achieve the 
best result in two datasets and one dataset, respectively. 

Furthermore, the Ant-Miner and hybrid pruner classifiers 

obtain lower results than other classifiers. 

The GA-Ant Miner has obtained the best classification 

accuracy and best model size. Under these circumstances, the 

GA-Ant Miner dominates the other classifiers in all 

evaluation criteria. This result is due to the enhancement 

process achieved by utilizing the GA ability to refresh the 

eliminated terms during the pruning process. 

TABLE III 

AVERAGE CLASSIFICATION ACCURACY (AVERAGE +/− STANDARD DEVIATION, PERFORMANCE RANK) OBTAINED USING 10 FOLDS CROSS-VALIDATION 

METHODS FOR ALL CLASSIFIERS AND GA-ANT MINER  

Dataset  Ant-Miner CAnt-Miner ACO/PSO2 TACO Hybrid Pruner GA-Ant Miner 

Balance Scale Accuracy 69.73% +/- 1.58%  69.29 % +/- 1.112 68.66 % +/-   4.97  66.65% +/- 2.1% 68.62% +/- 1.21%  71.53% +/- 1.46% 

Rank 2 3 4 6 5 1 

Breast Cancer 

(Ljubljana)  

Accuracy 72.32% +/- 1.73%    74.87% +/- 1.846 70.94 % +/- 5.37 74.66% +/- 2.52% 72.67% +/- 2.52% 75.53% +/- 2.59%  

Rank 5 2 6 3 4 1 

Breast Cancer 

(Wisconsin)  

Accuracy 94.43% +/- 1.17% 94.42% +/- 0.889 93.86 % +/- 4.56 94.56% +/- 0.85% 94%       +/- 1.06%  94.71% +/- 1.4% 

Rank 3 4 6 2 5 1 

Credit/A 

Dataset 

Accuracy 84.49% +/- 1.04% 84.92% +/- 1.063  84.69 % +/- 4.39 78.99% +/- 2.59% 84.64% +/- 1.06% 85.8% +/- 0.68%  

Rank 5 2 3 6 4 1 

Credit/G 

Dataset 

Accuracy 70.7% +/- 1% 71.80% +/- 0.841 71.0 % +/- 4.52  69.4%   +/- 2.16%   70.4% +/- 0.81% 71.5% +/- 1.51%  

Rank 4 1 3 6 5 2 

diabetic disease Accuracy 71.12% +/- 2.01% 74.61% +/- 2.197 76.31 % +/- 4.32 71.99% +/- 1.49% 73.3% +/- 1.68%  75% +/- 1.12% 

Rank 6 3 1 5 4 2 

Heart/Cleveland 

disease 

Accuracy 76.17% +/- 2.85% 77.23% +/- 1.652 78.51 % +/- 6.16 76.13% +/- 2.32%  76.63% +/- 1.49% 79.27% +/- 1.81% 

Rank 5 3 2 6 4 1 

Heart/Stat log 

diabetic disease 

Accuracy 77.78% +/- 2.41% 77.77% +/- 2.869 78.89 % +/- 7.78 77.78% +/- 2.14%  77.78% +/- 2.59% 80% +/- 1.67% 

Rank 4 6 2 4 4 1 

Hepatitis 

disease 

Accuracy 80.03% +/- 3.68% 76.20% +/- 2.034 76.13 % +/- 8.34 78.98% +/- 3.65%  75.71% +/- 2.89%  81.93% +/- 2.71% 

Rank 2 4 5 3 6 1 

Ionosphere 

dataset 

Accuracy 86.03% +/- 1.77% 84.60% +/- 1.074 65.51 % +/- 7.46 79.54% +/- 1.89% 86.51% +/- 1.77% 87.22% +/- 1.35%  

Rank 3 4 6 5 2 1 

Iris dataset Accuracy 94% +/- 1.85% 94.66% +/- 1.663 94.0 % +/- 8.14 94.67% +/- 1.94% 94.67% +/- 1.66% 96% +/- 1.47% 

Rank 5.5 4 5.5 2.5 2.5 1 

Lymphography 

medical 

imaging 

Accuracy 71.37% +/- 1.87% 74.85% +/- 3.475 77.19 % +/- 12.59 78.56% +/- 2.89% 68.26% +/- 2.59% 75.49% +/- 3.52% 

Rank 5 4 2 1 6 3 

Mushroom 

dataset 

Accuracy 97.14% +/- 0.42% 97.93% +/- 0.561 100.0 % +/- 0.0 96.27% +/- 0.75% 97.91% +/- 0.45%  97.85% +/- 0.31% 

Rank 5 2 1 6 3 4 

Segment dataset Accuracy 80.04% +/- 1.4% 84.76% +/- 0.846 82.08 % +/- 4.64 76.88% +/- 0.85% 82.99% +/- 1.24% 83.33% +/- 1.07% 

Rank 5 1 4 6 3 2 

Sonar dataset Accuracy 75.61% +/- 2.64% 77.88% +/- 2.482 54.86 % +/- 3.87 72.1%    +/- 4.01%  75.09% +/- 3.63% 78.42% +/- 2.73% 

Rank 3 2 6 5 4 1 

Tic/tac/toe Accuracy 73.58% +/- 1.72% 72.23% +/- 1.361 100.0 % +/- 0.0  71.59% +/- 1.57% 72.33% +/- 1.4% 75.45% +/- 2.1% 

Rank 3 5 1 6 4 2 
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TABLE IV 

AVERAGE MODEL SIZE (AVERAGE +/− STANDARD DEVIATION, PERFORMANCE RANK) OBTAINED USING 10 FOLDS CROSS-VALIDATION METHOD FOR ALL 

CLASSIFIERS AND GA-ANT MINER 

Dataset  Ant-Miner CAnt-Miner ACO/PSO2 TACO Hybrid Pruner GA-Ant Miner 

Balance Scale 
Accuracy 11 +/-0 11 +/-1 52 +/- 0 6.6 +/- 0.48 11 +/- 0 9.2 +/- 0.61 

Rank 4 4 6 1 4 2 

Breast Cancer 

(Ljubljana)  

Accuracy 7.8 +/- 0.29 7.80 +/- 1.14 26.8 +/-6.196 7.7 +/- 0.5 8.7 +/- 0.62 6.7 +/- 0.42 

Rank 3.5 3.5 6 2 5 1 

Breast Cancer 

(Wisconsin)  

Accuracy 8.4 +/- 0.22 8.0 +/- 0.94 17.1 +/- 2.42 7.1 +/- 0.38 7.4 +/- 0.31 6.5 +/- 0.22 

Rank 5 4 6 2 3 1 

Credit/A Dataset 
Accuracy 10.6 +/- 0.4 10.0 +/- 1.83 70.6 +/- 7.6 8.6 +/- 0.5 10.3 +/- 0.58 8.3 +/- 0.8 

Rank 5 3 6 2 4 1 

Credit/G Dataset 
Accuracy 14.7 +/- 0.58 16.4 +/- 4.24 30.5 +/-16.33 13 +/- 0.56 13.2 +/- 0.77 12.2 +/- 0.51 

Rank 4 5 6 2 3 1 

diabetic disease 
Accuracy 10.5 +/- 0.4 11 +/- 1.94 112.5 +/- 9.312 9.5 +/- 0.4 11.3 +/- 0.75 9.5 +/- 0.37 

Rank 3 4 6   1 5   1 

Heart/Cleveland 

disease 

Accuracy 9.6 +/- 0.69 10 +/- 2.49 28.3 +/- 4.347 7.7 +/- 0.54 9.2 +/- 0.8 8.4 +/- 0.64 

Rank 4 5 6 1 3 2 

Heart/Stat log diabetic 

disease 

Accuracy 9.6 +/- 0.58 7.8 +/- 1.39 25.9 +/- 4.30 5.7 +/- 0.26 8.7 +/- 0.62  7.5 +/- 0.37 

Rank 5 3 6 1 4 2 

Hepatitis disease 
Accuracy 8.1 +/- 0.48 7.9 +/- 1.44 11.6 +/- 2.31 7.8 +/- 0.65 8.1 +/- 0.71 7.5 +/- 0.52 

Rank 4.5 3 6 2 4.5 1 

Ionosphere dataset 
Accuracy 7.4 +/- 0.64 6.7 +/- 0.94 2.2 +/- 0.42 5.9 +/- 0.92 7.1 +/- 0.46  6.2 +/- 0.42 

Rank 6 4 1 2 5 3 

Iris dataset 
Accuracy 3.4 +/- 0.27 3.4 +/- 0.84 3.3 +/- 0.94 3.3 +/- 0.21 3.4 +/- 0.27  3 +/- 0.15 

Rank 5 5 2.5 2.5 5 1 

Lymphography 

medical imaging 

Accuracy 9.1 +/- 0.5 11.2 +/- 2.39 42.8 +/-6.48 5.2 +/- 0.39 8.8 +/- 0.65  8.9 +/- 0.77 

Rank 4 5 6 1 2 3 

Mushroom dataset 
Accuracy 9.3 +/- 1.25 4.7 +/- 0.94 33.4 +/- 2.87 7 +/- 0.26 8.2 +/- 0.47 7 +/-   0.45 

Rank 5 1 6 2.5 4 2.5 

Segment dataset 
Accuracy 21.9 +/- 0.69 22.5 +/- 4.30 59.3 +/- 7.9 20.9 +/- 1.39 24.8 +/- 1.2 20.1 +/- 0.82 

Rank 3 4 6 2 5 1 

Sonar dataset 
Accuracy 10 +/- 0.49 9.7 +/- 1.15 0.9 +/- 1.97 7.5 +/- 0.37 10.4 +/- 0.62 9 +/-   0.56 

Rank 5 4 1 2 6 3 

Tic/tac/toe 
Accuracy 10.7 +/- 1.69 10.7+/- 4.34 53.6 ± 7.306 6.8 +/- 0.81 12.6 +/- 1.31 4.3 +/- 0.7 

Rank 3 3 6 2 5 1 

Table 5 and Fig. 6 show the result of Holm’s post hoc and 

Friedman's nonparametric test to illustrate the second 

benchmark scenario. For this evaluation test, the average 

classification accuracy rank and average model size rank of 
the statistical results across the 16 datasets are computed and 

listed in Table 5.  

TABLE V 

TEST RESULTS OF THE NONPARAMETRIC TEST FOR GA-ANT MINER AND 

OTHER CLASSIFIERS 
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Accuracy 4.09 3.12 3.59 4.53 4.09 1.56 

Terms 4.34 3.81 5.15 1.78 4.21 1.68 

 

Fig. 6 shows that the results obtained by the GA-Ant Miner 

classifier outperform those of the other five classifiers in 
terms of classification accuracy and the number of discovered 

rules. Therefore, the GA-Ant Miner has a dominant result in 

comparison with other classifiers. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 6  Results of GA-Ant Miner on the average classification accuracy rank 

versus the average model size rank 

 

Fig. 6 proves that the result obtained by the GA-Ant Miner 

outperforms those of the other classifiers when considering 

the classification accuracy and model size ranks. The GA-Ant 

Miner only performs slightly better than the TACO classifier 

in terms of model size. Still, it is significantly better than 

TACO and the other classifiers in terms of classification 

accuracy. Therefore, GA-Ant Miner is the dominant classifier 

that balances the classification accuracy and model size. This 

result is due to the enhancement of the post-pruning technique 

by using the GA algorithm concepts (i.e., crossover and 
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mutation) to overcome the nesting effect's problem and find 

the best fitting rule by minimizing the number of terms based 

on the classification accuracy. 

IV. CONCLUSION 

This research introduced a new ACO-based rule 

classification algorithm, that is, the GA-AntMiner. The 

experimental results showed that our proposed GA-AntMiner 
significantly outperforms the well-known Ant-Miner, 

ACO/PSO2, TACO-Miner, CAnt-Miner, and Ant-Miner with 

hybrid pruner classification algorithms in terms of 

classification accuracy and model size. Moreover, using the 

new pruning technique based on the GA concept enabled the 

GA-AntMiner to be more flexible than the other classifiers. 

Future research directions are to adapt the parameter value 

(i.e., mutation rate and crossover rate) on the fly rather than 

maintaining a constant value to find the best classification rule. 

This task is essential in the rule classification technique to 

adjust the dataset's parameter values in designing a 
classification model.  
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