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Abstract—Communication-based train control (CBTC) system is an advanced train signalling and control technology which is 
developed using the moving block signalling (MBS) framework. The CBTC system has been shown to be capable of improving the 
operational efficiency, line capacity and safety of the railway operation. The main objective in implementing the MBS framework in 
CBTC system is to minimize the train headways through the utilization of an inter-train continuous communication system that 
determine and control the position of each train more precisely. One important challenge in such an implementation is the fulfillment 
of the necessary requirement of having highly accurate train localization method to ensure the safety of the short headway operation. 
This paper describes the results from experimental examination and application of a synchronization control strategy for the CBTC 
system using an unscented Kalman filter (UKF)-based sensor fusion approach as the localization method. In the proposed approach, 
the train localization task is performed using an UKF-based sensor fusion method which fuses measurement data from speed sensors 
and radio frequency identification tags. A synchronization control approach to ensure the safety movement of the train convoy in 
curved railway tracks under the MBS scheme is then proposed. The results presented in this paper show that the proposed 
localization and synchronization control methods can significantly improve the localization accuracy and reduce the inter-train 
headways. 
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I. INTRODUCTION 

The demand for more efficient rail transportation systems 
is currently increasing in Indonesia, especially in densely 
populated regions such as the Greater Jakarta area of the 
DKI Jakarta province. For instance, the currently operating 
KRL Commuterline (KRLC) that serves Jakarta and its 
neighboring cities has for a while, been facing the issue of 
overcapacity. A recent report [1] has shown that the 
operational load of the KRLC in 2017 has reached as much 
as 860,000 passengers/day (with a 17% annual growth rate) 
and caused significant overcapacity during the peak 
operational hours. Such an overcapacity is further 
complicated by the suboptimal operational efficiency of the 
train traffic due to the use of aged signaling and control 
systems with degraded performance. Increasing the line 
capacity and at the same time ensuring the operational safety 
of the railway transportation systems such as KRLC are 

therefore among the most essential issues in Indonesian rail 
transport systems development. 

The CBTC system is a modern advanced train signaling 
and control technologies which have been developed under 
the framework of MBS scheme [2]–[4]. Unlike the more 
traditional Fixed Block Signaling (FBS) scheme which 
partitions the rail track into several fixed/static sections or 
segments named "blocks" to determine the occupancy status 
of each of such blocks (cf. Fig. 1), the MBS scheme uses a 
continuous communication system which connects each train 
on the track and the wayside signaling equipment to 
dynamically separate and maintain a safe distance between 
adjacent trains based on a predefined safe operational 
scenario [2] (cf. Fig. 2). The MBS scheme has been shown 
to be capable of significantly reducing the headway of 
adjacent trains and thus increasing the track line capacity. To 
ensure the accuracy and safety of the MBS scheme 
implementation in CBTC system, reliable train localization 
and control modules are inevitably needed. 
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Fig. 1 Fixed Block Signaling (FBS) scheme. 

 
Fig. 2 Moving Block Signaling (MBS) scheme. 

The standard approach to perform the train localization 
task in the conventional FBS scheme mainly relies on the 
use of a track detection sensor such as track circuit or axle 
counter [3], [4]. The main limitation of this approach is that 
it is a static method which can only determine the occupancy 
status of a track segment (i.e. it does not provide real-time 
information about the exact position of each train in the 
occupied track segment). In order to implement the MBS 
scheme which requires real-time and accurate train position 
information, more reliable train localization methods are 
strictly needed. One such method is the sensor fusion (SF) [5] 
approach which combines data from various sensors to 
produce more accurate real-time localization information of 
moving objects such as trains. The SF method has been 
widely applied for real-time localization purposes in the 
fields of robotics and unmanned autonomous systems. Many 
research results have particularly reported that the SF-based 
localization results are generally more accurate and reliable 
than those obtained using only individual sensor information. 
In railway system applications, the SF-based localization 
method was first introduced in [6] using linear Kalman filter 
(KF) framework. Various SF-based localization methods 
were subsequently developed using such methods as 
extended Kalman filter (EKF) [7] and its combination with 
GNSS [8]–[10], map matching [11], probabilistic weighted 
fusion [12], visual-aided odometry [13], particle filtering [14] 
and probabilistic data fusion [15]. See e.g. [16] for a recent 
survey on train localization methods and developments. 

This paper reports the results of an experimental study 
and application of a SF-based synchronization control 
approach for the MBS-based CBTC system. In the proposed 
approach, the train localization task is performed using an 
UKF-based SF method. As shown in [17]–[22], the UKF 
often gives better estimation results than those obtained by 
the EKF method, especially in the case highly nonlinear 
systems. In this paper, the UKF method is used to fuse 
measurement data from speed sensors and radio frequency 
identification (RFID) tags. As for the control algorithm, this 
paper develops an extension of a previously developed 
synchronization control approach [23] to allow its use on 
more general curved track lines. Experimental results which 
demonstrate the performance of the proposed methods on a 
CBTC prototype are reported. 

II. MATERIALS AND METHODS 

This section presents the materials and methods that were 
used for implementing an UKF SF-based synchronization 
control method on a lab scale CBTC miniature prototype. 

 
 

A. Materials 

Two train miniatures, denoted as train A and B are used in 
the experiment to perform the MBS scheme operation. As 
shown in Fig. 3, three stations are defined on the track, 
namely the main station, station A and station B. The main 
station is where both trains can stop while each of the 
remaining two is where the corresponding train can stop. In 
the experiment, each train will stop twice (each for a few 
seconds), the first at the main station and the second at their 
respective station. 

Each of the two train miniatures is equipped with encoder 
while twelve RFID readers and a NodeMCU microcontroller 
are used as wayside sensor and onboard controller. The 
RFID tags play the role of balises in real railway system, 
whereas the NodeMCU collects all sensor data and then send 
them to a computer located in the wayside unit through a 
wireless communication link and MQTT protocol. Inside the 
computer, the UKF-based SF algorithm is coded in Matlab. 
The localization algorithm is first developed to predict the 
train position using train speed data from encoder. Once the 
RFID data are available, the predicted position will then be 
calibrated using the proposed UKF-based SF method. Fig. 4 
depicts the architecture of the experimental setup. 

 

 
Fig.  3 Track dimension and RFID tags placement.  

 
Fig. 4 System architecture for SF implementation. 

B. Methods 

In this section, the basic algorithm of discrete-time UKF 
that is used for implementing the SF method is presented. 
Discrete-Time UKG Algorithm:  In essence, the UKF is a 
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Bayesian-type estimation method which uses a probabilistic 
transformation to approximate the statistics of nonlinear 
systems [17]–[19]. Unlike the EKF method which 
propagates the states distribution through the first order 
linearization of the system dynamics, the UKF method 
instead generates a minimal set of carefully chosen sample 
points of the states distribution and then transforms them 
directly through the system model. Such sample points, also 
known as sigma points, are chosen to capture the true first 
two moments of the state distribution. As such, when 
propagated through the system model (cf. Fig. 5), these 
points will also capture the posterior distribution of the 
system’s moments. In this regard, the UKF method does not 
suffer the linearization-induced suboptimality issue that 
often occurs in EKF implementation. 

 
Fig. 5 An illustration of the sigma points transformation. 

The algorithmic implementation of the UKF is initialized 
with a set guesses on initial mean and covariance of the state 
variables, and afterward followed by two main steps, namely 
prediction and correction steps. The prediction step aims to 
estimate the future values of the state variables and output 
based on the results of sigma points transformation. When 
actual  measurements are available, the algorithm switches 
to the correction step which updates the previously obtained 
state and output predictions. These steps are then executed 
recursively whenever new measurement data are available. 

To describe the algorithmic implementation of the UKF, 
consider the following discrete-time nonlinear system model. 

 
 ���� � ����� � 1�, 
�� � 1�, �� (1) 

 ���� � ℎ���� � 1�, �� (2) 

 
where ����, 
���  and ����  denote the state, input, and 
output variables, respectively, at discrete time step k, while � 
and � are the process and measurement noises, respectively. 
Let  ���   and �� , respectively, denote the initial mean and 
covariance of the state variables. Then the initial probability 
density function of the state variables can be defined and the 
recursion steps in the UKF can be performed in the following 
steps (cf. [22], [23]). 

1) Prediction Step: The prediction step essentially 
performs the recursion of three tasks, namely state variables 
prediction, output variable prediction and Kalman gain 
calculation. Select the initial set of sigma points �� and its 
weight �� to capture the PDF of the state variables. These 
may for instance take the following forms. 

 
),1|1(ˆ

0 −−= kkxχ  (3) 

),/(0 jNjW x +=  (4) 

In addition, the values of (3)-(4) at the k-th time step for the 
i-th state variables may be determined as follows. 

 

,)1|1()()1|1(ˆ −−++−−= kkPjNkkx xiχ  (5) 

),(2/ jNjW xi +=  (6) 

where ��  denotes the dimension of state variables and � � 3 � �� is a scaling parameter. These sigma points and 
weights may then be transformed using the system model in 
(1) to obtain a predicted value of the form 

 
),),1(),1|1(()1|( wkukkfkk ii −−−=− χχ  (7) 

In this regard, the mean of the state variables can be 
determined using the so-called weighted statistical linear 
regression (WSLR) method to obtain 
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As a result, the prediction error ������  and covariance 

(���|� � 1�) may then be determined as 
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where �� denotes the process noise covariance matrix. 
 

Using the state variables prediction, a set of sigma points  �  for the output variables can be determined as  
 

),1|()1|1(0 −=−−Υ kkkk iχ  (11) 

,)1|()1|()1|1( −+−=−−Υ kkRjkkkk wii χ  (12) 

 
with similar weighting values as the state variables sigma 
points. Correspondingly, the predicted sigma points of the 
output variables may be obtained by transforming them 
through the system’s output model in (2) to obtain 

 
( ).),1|1()1|( qkkhkk ii −−Υ=−Υ  (13) 

Using the WSLR method, the predicted output variables 
may then be computed as 

 

.)1|()1|(ˆ
2

1
 −Υ=−
=

XN

i
ii kkWkky  (14) 

 
The residual error є���|� � 1�  and residual covariance  �є��|� � 1� of the output prediction are thus given by 

 
),1|(ˆ)1|()1|( −−−Υ=− kkykkkk iiε  (15) 
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where �! is the measurement noise covariance matrix. 

 
Based on the obtained prediction of the state and output 

variables, the prediction of the cross covariance may then be 
determined as follows. 
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At this point, the Kalman gain of the UKF may then be 

determined and updated recursively as 
 

).1|()1|()( 1 −−= − kkRkkRkK
xx εε  (18) 

2) Correction Step: The correction step utilizes the 
actual measurement data from sensors ("��� ) to make 
corrections on the computed state variables and output 
predictions. By using a similar routine as in the generic KF 
method, the correction begins with the calculation of the 
innovation variable of the form  

 

).1|(ˆ)()( −−=Θ kkykzk  (19) 

Using the innovation #���, the correction on the predicted 
state variables and covariance can be performed as follows. 

 

),()()1|(ˆ)|(ˆ kkKkkxkkx Θ+−=  (20) 

).(')1|()()1|()|( kKkkRkKkkPkkP −−−= ε  (21) 

The corrected values of the state variables and covariance 
prediction are then used in the next recursion of prediction-
correction iteration [17]–[22]. 

 
• Synchronization Control of CBTC Systems: 

The CBTC system generally consists of three major 
components, namely the wayside unit, on-board unit, and 
radio communication module between wayside and on-board 
units [2]–[4], [24]. The on-board unit consists of (i) on-board 
position sensors and (ii) computers which process all such 
sensors and use them to control the train speed. The wayside 
unit contains (i) the so-called automatic train supervision 
(ATS) system which controls all the operated trains, (ii) a 
zone controller and interlocking system which manage some 
predetermined areas in certain track line, and (iii) 
positioning tags which calibrate the train position as 
determined by the on-board unit.   

The MBS-based CBTC implementation relies on the so-
called movement authority which essentially is a real-time 
information exchange system that provides to each train real-
time location data as well as command of movement among 
trains along a track segment/area [24]. While the MBS-based 
CBTC has the potential to increase the line capacity, its 
current implementation does not provide a synchronization 
scheme which can ensure the attainment of a minimum 
possible headway among adjacent trains. The 
synchronization control scheme has been proposed for MBS-
based CBTC but its implementation remains limited to 
straight line track topology [23]. In this work, we extend the 
approach to allow its implementation on more general 
curved track lines through the development of an algorithm 
which maps curved train segments into appropriate and 
equivalent straight-line track segment. 

The main objective of synchronization control approach 
in MBS-based CBTC system is to dynamically separate 
adjacent trains by a minimum safety distance and then 

maintain such a condition for a certain duration of time. The 
theoretical development of this approach was developed in 
[23] for a particular form of straight-line track. The basic 
idea in that approach is illustrated in Fig. 6 which shows that 
the controller will be activated whenever a train enters a safe 
distance zone as measured relative to the train in front of it. 
In particular, the controller will automatically adjust the 
braking of the following train, slowing it down or 
accelerating it up until a stable minimum distance is 
achieved [23], [24]. 

 

 
Fig. 6 Activation of the synchronization control. 

Regarding the Figure 6, we define the notion of safety 
margin ($%) as the measured distance between the tail (�&') 
and the nose ��()� of adjacent trains when they are at rest. 
Furthermore, we also define the braking distance $((  as an 
estimated travelled distance after a train hits the brakes until 
a complete stop, i.e.: 

 

.2/))(),(( 2
sBBBBB vkvkxd β=  (22) 

 
where �(���  and *(���  denote, respectively, the position 
and velocity of the train B, and +, is the maximum braking 
rate of the train (cf. Fig. 6). Now, we define the so-called 
minimum distance ($-./���) of the synchronization as the 
sum of the safety margin ($% ) and the braking distance 
($((), i.e.: 

 

)).(),(()(min kvkxddxxkd BBBBMBNAT +=−=  (23) 

In the MBS scheme implementation, the leading train can 
halt suddenly and is thus has a resemblance to the brick 
walls phenomenon [4]. Under this assumption, the braking 
or decelerating dynamics of the following train (+() can be 
derived by differentiating (25) to obtain 
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where +( is the the deceleration of the following train. As a 
result, the value of  +( can be determined from (26) as 

 

,
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with *( 0 0 is assumed to hold.  In the case where adjacent 
trains start to move from rest (both train speed is zero), the 

$(( $% *( *& 
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acceleration of the leading (2&) and the following train (2() 
can be computed as 

 
,)( SaccA kk βα =  (28) 

2

411
)( acc

SB

k
k

++−
= βα  (29) 

where �344 is a constant.  
 

• Experimental Consideration: 
Several considerations are considered when implementing 

the proposed UKF SF-based synchronization control method 
on a lab scale CBTC system miniature track prototype as 
shown in Fig. 3. First, following the setup of the UKF 
method as described in Section II.B.1, a model for the train 
miniature is derived. In this regard, the train miniature is 
modeled as a rigid body with the following planar kinematic 
equation. 
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where 56�  and 567  denote, respectively, the Cartesian basis 
and ordinate positions of the train at time k on the track, 86 
is the train orientation, and *6 denotes the train speed. The 
train kinematic contains nonlinearities in the form of 
trigonometric functions.  

A fusion scheme as shown in Fig. 7 was then developed 
to process the collected sensor data. This diagram shows that 
two sensors are used in the experiment, i.e. encoder to 
measure the train speed and RFID tag readers to detect the 
train exact position. From the characteristics of these sensors, 
we found that the exact form of the train kinematic model in 
(30) is given by the following formula. 

 

956�567
: � ;1 00 1< 956=>�

56=>7 : + 0,3 @cos�86=>�
sin�86=>�F                        �31�  

 
 

 
Fig. 7 Sensor fusion scheme applied in the experiment. 

 
Using the obtained system model, the UKF procedure for 

SF task can be implemented. The set of sigma points, weight, 
and residual covariance for the implementation are defined 
below. The values of related parameters in these equations 
are summarized in Table 1. With these experimental model 
and parameters, the UKF-based SF procedure described in 
Section II.B.1 can be executed. 
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TABLE I 
UKF PARAMETER USED IN THE ALGORITHM 

UKF Parameter 

Parameter Value Notes 

σ_enc:σ_RFID 7:400 
Standard deviation of the used sensors. 
Smaller value indicates better accuracy 
and reliability. 

α_ukf 0.001 
Represent the sigma points distribution 
with respect to the mean value. Small 
value means close-to-mean sigma points.  

β_ukf 2 
Represents the system distribution where 
a value of 2 means Gaussian distribution 

Secondly, the implementation of the synchronization 
control for MBS-based scheme was performed based on the 
following scenario and rules. 

• The two trains depart from the same initial station 
• The following train maintains the safe distance with 

the leading train and must stop when the leading train 
is picking up passengers at a station 
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• Both train arrive at the same station 

Essentially, these conditions are used to ensure a Collison-
free operation of the trains. The used synchronization control 
algorithm receives the train position (�& and �( ) from the 
UKF-based SF result, whereas the train speed (*& and *() 
are determined from encoder sensor data. The 
synchronization control task is evaluated using a predefined 
safe distance parameter of $-./��� � 27KL  and an 
acceleration rate of �344 � �1 . The chosen minimum 
distance essentially sets the inter-train minimum distance to 
be the same as the train length. Based on the described 
synchronization control approach, the 
acceleration/deacceleration rate �+(� of the following train 
can be determined and then sent to the actuating motor to be 
calibrated to a train speed value (*() of the form 

 
,)()()1( tkkvkv BBB ∆+=+ β  (35) 

where ΔN is the sampling time of the encoder. 

III.  RESULTS AND DISCUSSION 

A. UKF-based SF Implementation 

The experimental evaluation of the proposed UKF-based 
SF is performed in two trials, the results of which are shown 
in Fig.  8 and Fig.  . In these figures, the red cross and blue 
circle marks denote the position of Train A and Train B,  
respectively. It can be seen in these plots that the proposed 
UKF-based SF method effectively estimates the positions of 
both trains based on the encoder and RFID tags data. 
Furthermore, the proposed localization method accurately 
shows that the distribution of each mark is more dense in 
each of the defined station, indicating that each train is 
slowing down and/or comes to a complete stop. 

 

 
Fig.  8 UKF-based SF implementation result (trial 1). 

 
Fig.  9 UKF-based SF implementation result (trial 2). 

 
We further compare the performance of the localization 

when using single sensor data (i.e. encoder) and that when 
using the SF method. Based on the resulting root mean 
square error (RMSE) as summarized in Table 2, the 
estimation errors of the SF-based localization method are 
significantly smaller than those based on single sensor data 
(both for individual train position estimation and in average). 
These results thus show that the the proposed UKF-based SF 
method has the potential to significantly improve the 
accuracy of the train localization system. The obtained high 
accuracy localization result is clearly very beneficial to 
support the CBTC implementation under the MBS scheme.  

TABLE II 
RMSE VALUE OF THE TRAIN LOCALIZATION TASK. 

Root Mean Square Error Value (cm) 
Train Trial x_enc y_enc x_ukf y_ukf 

A 
1 3.2 7.6 0.5 0.8 
2 5.6 4.3 0.8 0.8 

B 
1 3.3 3.4 0.7 0.7 
2 3.4 4.7 0.6 0.8 

Average 3.9 5.0 0.7 0.8 

B. Synchronization Control Implementation 

The experimental evaluations of synchronization control 
are conducted to compare the train operation performance 
under the FBS scheme and that under MBS scheme with 
synchronization control. The results of these experiments are 
shown in Fig.  and Fig. 11 which plot the position-time 
graphs of each train under the FBS and MBS schemes, 
respectively, for one full lap of the track. Both graphs in 
each of these figures essentially show the distance between 
the two trains in a signaling block.  

It can be seen in these figures that the average inter-train 
distance in the FBS scheme is about 162 cm, whereas the 
inter-train distance in the MBS scheme that is equipped with 
the proposed synchronization control approach is only about 
72 cm. These results thus show that, compared to the FBS 
scheme, the proposed MBS with synchronization control 
approach can reduce the operational headway up to 56%. 
These figures also show that the two trains in the MBS with 
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synchronization control scheme only need about seven (7) 
seconds to complete one full track, whereas the FBS one 
requires about 16 seconds to complete the same lap. These 
results thus clearly demonstrate the effectiveness of the 
proposed MBS with synchronization control approach in 
reducing both the train operational headway and travel time. 

 
Fig. 10 Position vs. time graph of two trains under FBS scheme. 

 
Fig. 11 Position vs. time graph of two trains under MBS scheme. 

IV.  CONCLUSION 

This paper has reported the experimental results that were 
obtained when implementing a UKF-based SF approach for 
train localization and synchronization control of CBTC 
system under the MBS scheme. The presented localization 
results showed that the developed UKF-based SF method 
significantly improve the accuracy of the train position 
estimation. Furthermore, the experimental results of the 
MBS scheme implementation under the proposed 
synchronization control approach successfully reduce the 
train’s operational headways and travel time. These results 
suggest that the SF-based synchronization control approach 
has a promising potential to improve the performance of 
CBTC systems. 
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