

Vol.10 (2020) No. 2

ISSN: 2088-5334

DATDroid: Dynamic Analysis Technique in Android Malware
Detection

Rajan Thangavelooa1, Wong Wan Jinga2, Chiew Kang Lenga3, Johari Abdullaha4

a Faculty of Computer Science and Information Technology, University Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
E-mail: 1trajan@unimas.my; 2wanjingwng@gmail.com; 3klchiew@unimas.my; 4ajohari@unimas.my

Abstract— Android system has become a target for malware developers due to its huge market globally in recent years. The
emergence of 5G in the market and limited protocols post a great challenge to the security in Android. Hence, various techniques have
been taken by researchers to ensure high security in Android devices. There are three types of analysis namely static, dynamic and
hybrid analysis used to detect and analyze the malicious application in Android. Due to evolving nature of the malware, it is very
challenging for the existing techniques to detect and analyze it efficiently and accurately. This paper proposed a Dynamic Analysis
Technique in Android Malware detection called DATDroid. The proposed technique consists of three phases, which includes feature
extraction, feature selection and classification phases. A total of five features namely system call, errors and time of system call
process, CPU usage, memory and network packets are extracted. During the classification 70% of the dataset was allocated for
training phase and 30% for testing phase using machine learning algorithm. Our experimental results achieved an overall accuracy of
91.7% with lower false positive rates as compared to benchmarked method. DATDroid also achieved higher precision and recall rate
of 93.1% and 90.0%, respectively. Hence our proposed technique has proven to be able to classify malware more accurately and
reduce misclassification of malware application as benign significantly.

Keywords— android malware; dynamic analysis; static analysis; hybrid analysis; malware detection.

I. INTRODUCTION

Worldwide smartphones market is dominated by
Android operating system (OS) with a staggering figure of
86.3% in 2018 as reported by IDC statistic data [1].
Android gains its popularity due to its open source concept
which enables users to use it freely in Google Play as well
as other third-party apps stores. This fact has encouraged
millions of mobile applications developments, which have
assisted in our day to day living and businesses. Owing to
this huge market, attackers are interested in targeting
Android platform where people spend most of their time.
According to Novinson [2], Android-based malware
samples has increased exponentially in 2018 compared to
2017 with a record of 5 million malwares in the first eight
months alone. Goodin [3] stated in his report that hundreds
of thousands of poorly secured devices with Google’s
Android OS had been attacked by a powerful denial-of-
service attack. Besides, it is reported that there are around
three hundred applications of botnet found in the official
Google Play market [3]. The malwares will silently enlist
the devices into the vicious network that sent junk traffic to
website once the user installed the applications. The
malware causes their device to become unresponsive or go
offline. Moreover, providing a secure communication for

5G mobile network remain a challenge due to limited
protocols to address the security issues.

It is imperative that a serious work begins intensively in
Android Malware detection to defend and safeguard against
these attacks. According to Skovoroda and Gamayunov [4],
there are many methods based on three main techniques
namely static analysis, dynamic analysis and hybrid
analysis (combination of Static and Dynamic) to detect and
analyze the behavior of the malicious application. The
limitation of detecting Android malware with static analysis
is that it does not find vulnerabilities present in the runtime
environment. This is because the technique uses static
signatures from the application’s manifest file. As such, it is
unable to accurately detect malware which does not have
obvious malicious signature. In addition, most of the apps
are obfuscated, or bytecode encrypted.

On the other hand, dynamic analysis is used to overcome
the limitation faced by the static analysis where it performs
the analysis during its runtime. Certain application will
reveal their original behaviors during its run time, hence
dynamic analysis helps to uncover some features that
cannot be determined by static analysis. The common
behaviors that concerned in the analysis is system calls, API
calls, network traffic, or even file access. Among them the
most popular in dynamic behaviors used is the network

536

traffic. In the case of network traffic analysis, Anshul and
Sateesh [5] proved that HippoSMS and RogueSP-Push,
capable to send and block SMS in the background silently
without having to wait for runtime. Hence, this scenario
posts a biggest challenge in Dynamic Analysis.

Hybrid analysis is the combination of both static analysis
and Dynamic analysis technique whereby static analysis
features obtained from analysis and dynamic features
collected during execution of the applications will be
analyzed for any malware activity in the device. Hybrid
analysis has proven to yield better detection rate with high
accuracy as reported by Saba et al. [6] and Mahima et al. [7]
in their work respectively. Although the combination of
both static and dynamic formed a better detection technique,
many people prefer to use dynamic analysis as it is cost
efficient in implementation compared to hybrid analysis.
This is because to have a comprehensive detection on the
device is impractical as it requires more hardware resources
and software computation. Although some researchers
analyze the relationships among feature sets such as system
calls, network packets and so on, there are still weaknesses
due to insufficient features for the classifier to detect the
malware samples accurately.

In this paper, we proposed a dynamic analysis technique
for Android malware detection called DATDroid which
mainly focused on the behaviors that extracted during run
time. Our proposed technique will extract the features and
permissions from android application and then perform
feature selection before proceeding to the classification.

The rest of the paper is organized as follows. Section II
discusses the materials and method involved in our
proposed framework. Section III presents the result and
discussion. Finally, section IV presents the conclusion of
our work.

II. MATERIALS AND METHOD

In this section we review three types of analysis
technique used in Android malware detection. These
techniques are static analysis, dynamic analysis and hybrid.

A. Static Analysis

Milosevic et al. [8] presented static analysis for Android
malware detection using permission and source code
analysis. The method uses two machine learning algorithms
which are classification and clustering. The classification is
utilized to differentiate a malware from good ware and the
clustering is applied to cultivate a classification model with
more data again.

Yerima et al. [9] proposed an ensemble learning Android
malware detection with static analysis which is better than
traditional signature-based methods for detecting unknown
malware. The machine learning algorithms used a vast
repository of malware samples and benign applications
from a leading antivirus vendor as training data. The
comparative analysis compared results of detection from
several classifiers. This approach is performed without
feature selection process.

Zhang and Ziao [10] introduced CSCdroid which was a
contribution-level-based system call (SC) categorization.
CSCdroid used the concept of contribution to quantitatively
examine SCs relevance for malware identification in

contrast to previous work which used all SCs to create
feature vectors which determined the application’s behavior.
Markov chains are constructed based on the SCs to create
target feature vectors. Finally, the vectors are put into the
trained SVM classifier to determine the application. This
work used only limited SCs.

B. Dynamic Analysis

Dynamic analysis is known as behavioral-based analysis.
It is a detection that works by collecting data from system
runtime during program execution. The common data
collected are system call, network data, files and memory
modification. Shankar et al. [11] introduced a framework
named AndroTaint and worked on dynamic taint analysis to
detect Android malware. AndroTaint used anomaly
detection technique to identify the different components
such as services, events, activities and permissions. The
framework consists of two phases which are training phase
and analysis phase. In training phase, taint adapter assists
feature extraction and produces tags then stored them in the
SysTrace log file. Later, in analysis phase automatic
tagging and tainting are executed by examining the Android
application with log file AppSysTrace from SysTrace log
file. All behaviour and property of the taint sources are
checked for any bad-ware source. If found to be bad-ware
an automatic tagging process will kick start tainting. The
work did not cover the basic feature like memory and CPU
usage.

Martenelli et al. [12] proposed D-BRIDEMAID a
lightweight application, which acts as a dynamic Intrusion
Detection System (IDS), reporting the malicious
application’s behavior. D-BRIDEMAID is a lightweight
application installed on users’ android mobile phone for
testing and evaluation voluntarily. After tester (user)
evaluated the application, the report will be submitted. The
decision of application trustworthiness is obtained by using
an aggregator based on report of testers regarding every
analyzed application.

Dynamic analysis is useful in analyzing the obfuscated
source code of the application. Bhatia and Kausal [13]
developed a syscall-capture system to analyze the behavior
of the malicious application in Android by using the system
call traces collected during a run time. Monkey tool is used
to automate random execution of different activities on the
application for a pre-specified duration of the time. While
the application is running, strace utility captures all the
system calls. After that, Android Monkey tool uninstalled
the application after it has stopped and fetched the file. The
feature set of system started to detect the behavior of the
application and collect the frequency of system calls. The
J48 Decision Tree and Random Forest are used on the
aggregated datasets to categorize the dataset into benign or
malicious applications.

Liu et al. [14] proposed an emulator-based dynamic
analysis framework called RealDroid. Their framework
capable to detect evasive malware behaviors and analyze
Android application using automated exploration
mechanism known as Android Test Engine (ATE) in large
scale. Next, the framework keep tracks the system calls of
target application by using process level behavior
monitoring techniques for malwares and detect it.

537

Tangil et al. [15] proposed a framework called
ALTERDROID, a dynamic analysis approach to detect the
obfuscated and hidden malware components that are
distributed with legitimate Android application package.
ALTERDROID was based on two major differentiation
methods which are fault injection and differential analysis.
The original application and the automatically generated
application with modification (fault) that are carefully
injected are analyzed for its behavioral differences. The
differential fault analysis technique is effective in detecting
the stegomalware which is a malware that uses advanced
hiding methods like steganography. ALTERDROID’s
architecture supports running various analysis task in
parallel and offloading them to the cloud.

C. Hybrid Analysis

Hybrid analysis is the combination of both static analysis
and dynamic analysis. Since it combines both the techniques
hence its time consuming and resource constraints because
it requires extended software and hardware. Martinelli et al.
[12] proposed a framework analysis BRIDEMAID, which
exploits both static and dynamic approaches to detect
malicious applications on Android mobile devices. The
static analysis uses n-grams matching to detect malicious
application pattern while dynamic analysis based on
multilevel monitoring include device, application and user
behavior at runtime. There are three features extracted that
is static, meta-data and dynamic analysis. First, the
application is downloaded to do n-gram statistical analysis.
It is then unpacked and undergoes batch static analysis. The
malicious application is discarded during the static analysis.
After that, meta-data analysis is carried out to analyze the
permissions, rating, download number and developer
reputation. Lastly, dynamic analysis checks the components
at runtime. These components are text messages, SysCalls,
installed packages, opened connections and admin
authorization during the event hooking and policy
enforcement. The BRIDEMAID uninstalls malicious
application when it is discovered. The combination of
different approaches improves the accuracy of detection.

Su et al. [16] proposed a combination of two layers (static
and dynamic) analysis system. The static analysis uses
WEKA tool for machine learning classification and the
multiple built-in algorithms to determine the source code
with optimal accuracy. At Layer 1, static analysis extracts
four types of features namely permission, native-
permissions, intent priority and function calls of the
application from AndroidManifest.xml file. The
classification process is done using WEKA tool. If at layer 1
suspicious malware behavior detected, users are notified of
results. At layer 2, user uploads the suspicious malware
application to the sandbox server. The dynamic analysis
examines the log files in active stage for any hidden
malicious action within the application and unveil it. The
analysis running in the simulator will be recorded and user
will be informed of the result when analysis is completed.

D. Proposed Framework

This section discusses the proposed framework for
malware detection in Android mobile platform using
dynamic analysis. Our proposed technique consists of three

phases which are feature extraction, feature selection and
classification. Figure 1 shows the proposed framework.

Fig 1. Proposed DATDroid framework

1) Feature Extraction: The feature extraction is the
foremost necessary process as it determines the accuracy of
the proposed method. The process involves extracting
features from the input android application which is in APK
(Android Package) file format. Our proposed technique
uses dynamic analysis technique to extract the features from
each application. Figure 2 illustrates the process of
extraction whereby the APK files will be loaded into an
emulator. This emulator is an Android virtual machine. As
soon as the android application is activated, the behaviors
of the application samples are logged and extracted based
on the script (algorithm for feature extraction). In this work,
the script contains the algorithm to extract system call, CPU
usage, memory usage, and network packets. Our work used
Monkey tools [17] to generate the random interaction of the
applications at the runtime. Monkey is a random event
creator offered as part of the toolkit of the Android
developers that do not need to be modified. It is also known
as a method to train the mobile applications, that sends
clicks and swipes to a computer or an emulator, pseudo-
random events as per Alzaylaee et al. [18]. Finally, the
extracted features are logged into log files and formed a
detail feature sets which will be used for the feature
selection phase.

Three main features were selected out of ten features
through ranker method in this proposed project to determine
the characteristics of malware and benign. They are system
calls, network packets, CPU and memory usage. The feature
sets are extracted under each main feature for example under
system call features there will be a few feature sets (sub-
features) such as errors, total calls, total errors and so on.
Sometimes this feature may vary based on some applications,
for example benign and malware produce different call
features. Thus, machine learning algorithms were used to
analyze or classify their behaviors based on all these mixed
contains.

The first feature that has been extracted was system call as
all resources are mainly distributed through a set of system
calls by the Linux kernel to the mobile applications. L. Singh
and M. Hofmann [19] stated shows that by analyzing
specific system call requests, the resource allocation of the

538

targeted application can be determined, which also
differentiates the behavior of malware and benign.

Since almost most of the malicious behaviors are
performed via the network interface, the DATDroid chooses
this feature as a main target to study malware traits. Wang et
al. [20] in their work prove that by examining the network
traffic, they can uncover the exposure of delicate information
by some malware applications. Furthermore, DATDroid
exploits the CPU and Memory usage to detect the malware
behaviors because, these two features help to understand
some crucial usages by both malware and benign
applications.
This paper explains the process of collecting System Calls,
describes the records of CPU and memory usage, and states
the process of collecting network packets.

Fig 2. The flow of feature extraction

In a collection of System Call, the android x86 (emulator)
is installed on the Virtual Machine (VM) and the settings
are in tune for malware analysis. In order to capture the
system call, the emulator must be rooted, and a utility tool
called strace [21] is used. To avoid the damage of an actual
android device, the malicious APKs will be installed in the
emulator during the experiment. The strace utility will
capture the system calls when the application is running
with their multiple processes of each APK. The output of
the strace consists of the system calls, the frequency of each
system calls, the time taken per system call in microseconds
and the percentage of the time spent by each system call
during the execution of the specific application. All the
strace outputs are recorded into a single Comma Separated
Values (csv) file format.

The CPU and memory usage are recorded and collected
during the runtime. Another utility tool called adb (Android
Debug Bridge) shell [22] is used to collect the CPU usage.
A list of memory usage that are captured using adb shell
command from Android VM are generated. The captured
memory usage details are recorded in the “proc/meminfo”
directory of Linux system. The output of the memory usage
file contains MemFree, Active, Inactive, Dirty, Mapped and
AnonPages.

Network packet is the third feature that are essential part
to be captured and recorded during the runtime of the
application for feature extraction purpose. The network
traffic of the packets and bytes captured are the features
used to establish a malware detection metric. Tcpdump [23]
is a command line which is used to capture the network
packets of the specific application while it is running on the
virtual machine. The captured network packets details are
saved in the form of pcap file. We used Wireshark [24] as
the network packet analyzer to analyze network packets
and extract its details. Wireshark able to display the total
transmitted packets (TX Packets), total transmitted bytes
(TX Bytes), total received packets (RX Packets) and total

received bytes (RX Bytes). These are the features used to
determine the behavior of the malware application.

2) Feature Selection: Not all features are beneficial
when combined for the classification. In addition, higher
dimensionality of features requires higher processing
resources. Hence, it is necessary to perform the most
relevant feature selection to optimize the malware detection
performance of our proposed technique. Gain Ratio
Attribute Evaluator is applied in our work to perform feature
selection. This method is an automated selection of
attributes in the aggregated data. The Gain Ratio Attribute
Evaluator is proven to work smoothly with the Random
Forest classifier.

3) Classification: Coronado-De-Alba et al. [25] in their
work, used one of the data mining tools called the Waikato
Environment for Knowledge Analysis (WEKA) [26] for
classification process. This tool provides many commonly
used classifiers for android malware classification. Among
many, we have selected the most popular Random Forest
classifier as a classification algorithm for application
behavior. S.S. Hansen [27] in their work shows that
Random Forest is a collective classifier which depends on a
variety of trees to decrease the classification variance and
thus enhances predictive efficiency. In this classification
phase, two processes namely training, and testing will be
conducted. During the training process, we will train the
classifier to differentiate malware from benign application
and will use the trained classifier in the testing process to
validate the performance.

III. RESULTS AND DISCUSSION

This section describes the development process of our
proposed DATDroid detection technique which includes
software requirement, experimental setup and dataset
processing. The Android application in APK format is
installed in Android VM via adb command. The adb
command also used to connect the Android VM to Internet
Protocol (IP) address. Monkey tool [17] is scripted
automatically to produce 500 random gestures and touches
in 1 minute on the specified application in Android VM to
depict the real action of application as if in the Android
phone. Figure 3 shows the output of strace utility [21] that
captured the system calls, the frequency of the system calls,
time and user calls.

Fig 3. Sample of output by using strace utility

539

The output of the system calls was saved in a log file.
The CPU usage is extracted by using ‘top’ command.
Memory features are extracted using cat/proc/meminfo
command line where it produces the detail information of
the memory usage of an application. The Windows
Subsystem for Linux (WSL) is used to capture the network
packets of the running application in Android VM through
tcpdump. The results are saved in packet capture (.pcap)
file format. Then the captured network packets are analyzed
in Wireshark and TCP is selected for transmission and
received packets and bytes as shown in Figure 4.

Fig 4. Wireshark analysis of captured network packets

A total of 200 dataset samples were used in this work
which includes 100 benign and 100 malicious Android
applications. The benign applications were downloaded
from APKPure [28] market while the other 100 malicious
applications were downloaded from the Android Malware
Genome Project by Zhou and Jiang [29]. The benign
applications are validated using VirusTotal [30] to ensure
the application is clean and free from malware. Weka Tool
is used for the feature selection and classification phase. We
used Gain Ratio Attribute Evaluator in our work as the
feature selection technique which measures the gain ratio of
a corresponding class and assesses the value of an attribute.
Search Method Ranker ranks the attributes of individual
assessment. Thus, the order of ranking indicates the
significance of each feature in the decision of correct class
label as per Onik et al. [31]. The top ten attributes are
selected from all the feature sets based on the highest-
ranking generated by feature selection. Whereas the
Random Forest classifier is used in the classification
process. The classifier is used to train and test the dataset
during the classification process. The collected datasets are
divided into 70 percent of training sets (70 malware and 70
benign samples) and 30 percent of testing sets (30 malware
and 30 benign samples). After the training phase has been
completed, the trained model will be used in the testing
phase to evaluate our proposed technique.

Data collected from six experiments conducted are
discussed in this section. Experiment 1,3 and 5 were based
on the BK method were reconducted to check their
performance with three types of different features sets as
mentioned in Table I. Furthermore, experiments 2, 4 and 6
were conducted based on DATDroid proposed method with
different types of features combination since more than one
feature has been combined and used in the proposed
method. Then, the classification result is generated through
Weka Tool to measure the performance matrix of our
proposed technique. Table I illustrates the comparison of
performance measurement between our proposed technique

and existing method known as BK method by Bhatia and
Kaushal [13]. Experiment 4 in Table I, proves that the
highest rate was achieved with an accuracy rate of 91.7%.

The overall results of accuracy, precision, recall, and
error rate are revealed in Table I. Our proposed method can
achieve a higher accuracy rate than the BK method because
we combined the extracted features to obtain a better result.
Each experiment in our work was setup with different types
of feature datasets and the details are illustrated in Table II.

TABLE I
COMPARISON OF PERFORMANCE MEASUREMENT

Android
malware
Detection

Experi -
ments

Accuracy
(%)

Precision
(%)

Recall
(%)

Error
rate
(%)

BK
methods

1 78.3 90.4 63.3 21.7
3 81.7 88.0 73.3 18.3
5 78.3 90.5 63.3 21.7

Proposed
methods

2 85.0 83.9 86.7 15.0

4 91.7 93.1 90.0 8.3
6 90.0 83.3 100.0 10.0

TABLE II
FEATURE SETS OF DIFFERENT EXPERIMENT

Experiment Features No. of
features

1 System call 72

2
System call + errors + time +
CPU usage + memory+ network
packet

91

3 System call (feature selection) 26

4
System call + errors + time+ CPU
usage + memory+ network packet
(feature selection)

43

5 System call (top ten ranked
attributes of feature selection) 10

6

System call + errors + time +
CPU usage + memory+ network
packet (top ten ranker attributes
of feature selection)

10

Based on the results in Table I, we can conclude that the

values of each performance measurement are varied
because each experiment was conducted in different
specification. For example, Experiment 1 classification with
one feature set and without the feature selection process
while Experiment 4 was conducted with all the feature sets
and undergo feature selection as well. The result from
Experiment 4 shows the highest accuracy in general and
this indicates that our proposed technique achieved better
performance than the existing method (BK method) with
less error rate. This is due to more relevant and common
features that are significant to the Android malware
detection were included in our proposed experiments.
Consequently, it enhances the classification process with
more efficient detection and thus produces a better result.

IV. CONCLUSION

This paper presents an Android malware detection
technique using a dynamic analysis called DATDroid.

540

Validated through a series of experiments, DATDroid is
proven to perform better in terms of detection rates as
compared to the former method. A total of 6 experiments
were conducted with various specifications and feature
selection processes. Experiment 4 is proven to be the best
combination of features selected, which produced the best
overall results among the six experiments. The overall
accuracy of our proposed method has improved from 78.3
percent to 91.7 percent when compared to the BK method,
which is without a feature selection process. In our
proposed method, all the feature sets were applied with the
feature selection process before the final stage of
classification.

Further research can be focused on exploring more
features which are not proposed in this work. Advanced
features like Hypertext Transfer Protocol, Domain Name
System, Transmission Control Protocol/Internet Protocol,
and other memory usages pattern of each application should
be extracted to improve the performance measurements of
malware detection. Finally, future work should be
conducted using the hybrid analysis method to get better
accuracy results because the dynamic analysis can reveal
the run time information while the static analysis can reveal
other information that cannot be extracted through the
dynamic run time process.

ACKNOWLEDGMENT

The authors would like to thank Universiti Malaysia
Sarawak, MALAYSIA for funding this work through
Special Short-Term Grant No. F08/SpSTG/1366/16/8. The
authors would also like to thank APKPure and Android
Malware Genome Project for the benign and malware
samples respectively made available through their websites
as well as VirusTotal for validation facilities in their
website.

REFERENCES
[1] Smartphone Market Data (2019) on IDC website. [Online]. Available:

https://www.idc.com/promo/smartphone-market-share/
[2] M. Novinson. (2019) The 10 Biggest Android Security Threats in

2018 on The Channel Company website. [Online]. Available:
https://www.crn.com/slide-shows/security/the-10-biggest-android-
security-threats-in-2018/

[3] D. Goodin. (2019) One of 1st-known Android DDos malware infects
phones in 100 countries on ARC Technica website. [Online].
Available: https://arstechnica.com/information-
technology/2017/08/first-knownandroid-ddos-malware-infects-
phones-in-100-countries/

[4] A. Skovoroda and D. Gamayunov, “Securing mobile devices:
Malware mitigation methods,” Journal of Wireless Mobile Networks,
Ubiquitious Computing, and Dependable Applications., vol. 6, no. 2,
pp. 78-97, 2015.

[5] A. Anshul and K.P. Sateesh, “NTPDroid: A Hybrid Android
Malware Detector using Network Traffic and System Permissions,”
In IEEE BigDataSE-18, pp. 808-2813, 2018.

[6] A. Saba, A.S. Munam, W. Abdul, M. Amjad and S. Houbing,
“SAMADroid: A Novel 3-Level Hybrid Malware Detection Model
for Android Operating System,” IEEE Access, vol. 6, pp. 4321-4337,
2018.

[7] C. Mahima and K. Brij, “HAAMD: Hybrid Analysis for Android
Malware Detection,” In International Conference on Computer
Communication and Informatics (ICCCI-2018) Coimbatore, India.
Jan 04-06, 2018.

[8] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine
learning aided Android malware classification,” Computers &
Electrical Engineering, 2017.

[9] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android
malware detection using ensemble learning,” IET Information
Security, 9(6), pp.313-320, 2015.

[10] S. Zhang, and X. Xiao, “CSCdroid: Accurately Detect Android
Malware via Contribution-Level-Based System Call Categorization,”
In Trustcom/BigDataSE/ICESS, 2017 IEEE, pp. 193-200, August
2017.

[11] V. G. Shankar, G. Somani, M. S. Gaur, V. Laxmi and M Conti,
“AndroTaint: An Efficient Android Malware Detection Framework
using Dynamic Taint Analysis,” in ISEA Asia Security and Privacy
(ISEASP), Jan. 2017.

[12] F. Martinelli, F. Mercaldo, A. Saracino, and C. A. Visaggio, “I find
your behavior disturbing: Static and dynamic app behavioral analysis
for detection of android malware,” In Privacy, Security and Trust
(PST), 14th Annual Conference IEEE, pp. 129-136, Dec. 2016.

[13] T. Bhatia, and R. Kaushal, “Malware detection in android based on
dynamic analysis,” In International Conference on Cyber Security
and Protection of Digital Services, IEEE pp. 1-6. June 2017.

[14] L. Liu, Y. Gu, Q. Li and P. Su, “RealDroid: Large-Scale Evasive
Malware Detection on “Real Devices,” In 26th International
Conference on Computer Communication and Networks (ICCCN),
IEEE, 2017.

[15] G. S. Tangil, J. E. Tapiador, F. Lombardi and R. D. Pietro,
“ALTERDROID: Differentisl Fault Analysis of Obfuccated
Smartphone Malware,” In IEEE Transaction on Mobile Computing,
vol. 15, no. 4, pp. 789-802, April 2016.

[16] M. Y. Su, K. T. Fung, Y. H. Huang, M. Z. Kang, and Y. H. Chung,
“Detection of Android malware: Combined with static analysis and
dynamic analysis,” In International Conference on High
Performance Computing & Simulation (HPCS), IEEE, pp.1013-1018,
July 2016.

[17] Monkey tool (2019) on Developer Android homepage. [Online].
Available: https://developer.android.com/studio/test /monkey.html/

[18] Alzaylaee, M. K., Yerima, S. Y., & Sezer, S., “Improving Dynamic
Analysis of Android Apps Using Hybrid Test Input Generation,” In
International Conference on Cyber Security and Protection of Digital
Services, pp. 1-8, 2017

[19] L. Singh and M. Hofmann, “Dynamic Behavior Analysis of Android
Application of Malware Detection,” In International Conference on
Intelligent Communication and Computational Techniques (ICCT).
IEEE, 2017.

[20] S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng, and Z. Jia,
“TrafficAV: An effective and explainable detection of mobile
malware behavior using network traffic,” In IEEE/ACM 24th
International Symposium on Quality of Service (IWQoS), 2016.

[21] (2019) Strace Utility website. [Online]. Available: https://strace.io/
[22] ADB shell (2019) on Developer Android homepage. [Online].

Available: https://developer.android.com/studio/command-line/adb/
[23] (2019) Tcpdump website. [Online] Available:

https://www.tcpdump.org/
[24] (2019) Wireshark website. [Online]. Available: https://www.

wireshark.org/
[25] LCoronado-De-Alba, L. D., Mota, R. A., & Ambrosio, P. J., “Feature

Selection and Ensemble of Classifiers for android malware detection,”
In 8th IEEE Latin-American Conference on Communications
(LATINCOM). IEEE, 2016.

[26] WEKA Tools (2019) on The University of Waikato homepage.
[Online]. Available: https://www.cs.waikato.ac.nz/ml/weka/

[27] S.S. Hansen, T.M. Larsen, M. Stevanovic, and J.M. Pedersen, “An
approach for detection and family classification of malware based on
behavioral analysis,” In International Conference on Computing,
Networking and Communications (ICNC). IEEE. 2016.

[28] (2019) APKPure website. [Online] Available: https://apkpure.com/
[29] Y. Zhou and X. Jiang, “Dissecting Android Malware:

Characterization and Evolution,” IEEE Symposium on Security and
Privacy, 2012.

[30] (2019) VirusTotal website. [Online] Available:
https://www.virustotal.com/

[31] A. R. Onik, N. F. Haq and L. Alam, “An Analytical Comparison on
Filter Feature Extraction method in Data Mining using J48 Classifier”
In International Journal of Information and Education Technology,
vol. 124, no. 13, 2017.

541

