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Abstract— Internal undular bores have been observed in many parts of the world. Studies have shown that many marine structures
face danger and risk of destruction caused by internal undular bores due to the amount of energy it carries. This paper looks at the
transfor mation of internal undular borein two-layer fluid flow under the influence of variable topography. Thus, the surface of the
bottom is considered to be slowly varying. The appropriate mathematical model is the variable-coefficient extended Korteweg-de
Vries equation. We are particularly interested in looking at the transfor mation of KdV-type and table-top undular bore over the
variable topography region. The governing equation is solved numerically using the method of lines, where the spatial derivativesare
first discretised using finite difference approximation so that the partial differential equation becomes a system of ordinary
differential equations which is then solved by 4™ order Runge-Kutta method. Our numerical results show that the evolution of
internal undular bore over different types of varying depths regions leads to a number of adiabatic and non-adiabatic effects. When
the depth decreases slowly, a solitary wavetrain is observed at the front of the transfor med internal undular bore. On the other hand,
when the depth increases slowly, we obser ve the generation of step-like wave and weakly nonlinear trailing wavetrain, the occurrence
of multi-phase behaviour, the generation of transformed undular bore of negative polarity and diminishing transfor med undular bore
depending on the nature of the topography after the variable topography.

Keywords— Internal undular bores; extended KdV equation; method of lines; two-layer fluid system; solitary wavetrain.

transmission of acoustic wave and dominate the direction of
[. INTRODUCTION the fluid-flow under water [9]—[11].

Internal undular bores have been observed propagating in The gppropr.iate model to descri.b_e the npnlinear internal
coastal ocean in many parts of the world [1]. An undular waves in a fluid system with stratification is the extended

bore refers to a flow of oscillatory fluid connecting two Korteweg-de Vries (eKdV) equation [12], [13]. This model

different constant depth of streams. These two streams ar&® ext(_ended fr.om _the \(vell-known Korteweg—de Vries (KdV)
connected by a hydraulic jump and propagate in horizontal€auation, which is widely useq to describe the nonlinear
velocity and exhibiting a solitary wave as the leading wave shall(_)w water waves. H_ere,_ internal undular bqres are
[2], [3]- The occurrence of internal undular bore can be considered to_pe propagating in a system that consist of two
generated by transcritical flow over topography [4]. In past layers o_f stratified fluid. '_I'herefore, the KdV equation is not
few decades, the trace of internal undular bore have beeftPPropriate due to the difference of densities of both layers.
found in some stratified fluid areas around the world, e.g. Whe_n th_e dlffere_nce IS very sm_all, _the coeff|C|e_nt of
continental shelf off Point Sal, California [S]Japan/East Sea nonllnearlty. term in the KdV. equation Is nea.rl_y vamshed.
shelf-coastal region [6] and Peter the Great Bay [7]. Similar Therefore,i It Is important to mtroducg an additional h_|gher
to internal waves, the occurrence of these strongly nonlinearOrder ”Of.‘"”e%f term in the Kdv equation in or(_jer to raise up
internal elevation waves packets or internal undular boresthe nopllnearlty effects for dynamic balancing with the
have been studied to know the impacts affect to the Sead|sp(_ar3|on effects [14], [15]. . .
currents, fluid density, and temperature fields of the fluid [6], It is very important to study the be_haymur of the internal
[8]. Moreover, their propagation in the fluid layers WAVesas they pose danger to the buildings or structures near

considerably affects the vertical mixing of nutrient contents, the coastal regions due to it carried large amount of energy
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[16]. To prevent the coastal erosion, there are many coastal Here, we shall supposg = 0 andx; — X, >> 1. We will
structures built to reduce the impact from internal waves for consider two kindss of variable region in the intemad x <
instances, concrete walls [17], stone revetments and tetra;

pods [18]. Furthermore, internal undular bores are evolving « slowly increasing slope

over different kinds of variable depth regions. The primary « slowly decreasing slope

aim of this article is to look at how the variable topography The schematic of our problem is illustrated in Fig. 1.
influences the evolution of internal undular bores. Inthe next  The first two terms in equation (1) are the dominant

section, the problem formulation and the numerical methodterms. Therefore, equation (1) can be transfromed using the
adopted in this study are discussed. Numerical results argollowing new variables [19],

presented in Section Il and the final section would be our % dx
conclusion. A=QU, T:'f e X=c(T -t).

By substituting the new variables into the veKdV equation
yields the following equation, to the same leading order of
The mathematical model for nonlinear internal waves in approximation where equation holds

stratified fluid over variable topography is the variable 2 _
coefficient eKdV (veKdV) equation [19]. Ur +aUUx + B0 U +AU 50 =0, @)

II.  MATERIALS AND METHOD

where

cQ 2
+CA ——* A+ uAA + 1, A +0 =0, — — —
A A( Q iz A< M A( A&xx 1) a=Qu, ﬁ_Qzﬂl, /]—5
where A denotes the wave amplitudg, andt are the In terms of the new variables after the tranformatigrg,
temporal and spatial variables respectively. Here, the speednd/ are functions off. For the depth profile, we consider
of the linear long wave is represented bfx). Q(X) H; = 1.5 is constant for all andH, varies according to
represents the linear modification factor. It is defined such
that Q°A? is the linear long wave action flux. There are hhy :0<T<T,
thre(_a important coefficients i.eu(X), ,u_l(X) Qenote the Hy(T) =1 f(T) :H<T<T,
nonlinearity terms and(x) denotes the dispersive term. The _
coefficients of the veKdV equation, i.@, u;, andJ are hy tT2,
slowly varying functions ok and are defined by wheref(T) is a function in terms ofF.
3c(p2H12 ‘,01H22) The oscillatory structure of the undular bore can be
= oH Hz(p H,+ pH ) evolved from a simple unit step using Heaviside function.
PrAMZL AT Here, we shall consider the initial condition for the veKdV
-3 (le ) —,02H12)2 equation (2) to be in the form of a sharp step,
/11 = f \ 1 = -_—
8IHH oo+ Ho | 480,04 H o(H, + H, Y =UP). .
cH H {oH, + p,H,) Here, we letJ, > 0 andP is a Heaviside function to generate
5= Cr AP Y Porla) a hydraulic jump connects two different constant depth.
6o H 1+ pH>) ;
1, ifX>0,
where P(X) = )
1 0, ifX<0.
- [9W2-p HH, o= / . This study adopts the method of lines (MOL) in order to
2pH, 29(,02_,01)0 solve the veKdV equation (2) numerically. First, we make

The densities of the fluid for both layers are constants approximation to the spatial derivatives so that the governing
denoted byp; and p, respectively.H; and H, denote the  equation (2) will be reduced into a set of ordinary
depths for upper and lower layers respectively. We supposdifferential equations (ODEs). Then, this system of ODEs
that H; remains constant all the time amty(x) changes can be solved by any time integrator. The MOL is widely
monotonically varies frorg to h; in the regiong < x < x;. used in solving many partial differential equations, e.g. the

eKdV equation [20-21], KdV equation with forcing term
[22], and forced KdVB equation [23]. To begin, we rewrite
3 veKdV equation as follows

1 _ 2
! M Top layer Up =-aUUy = BU Uy =AU xx -
! The spatial derivatives are discretized using central finite

T Y difference formulae as follows,
o P2 n Lower layer U..,+U._
Hy U X = le
! 2AX
v v ! Bottom surface Uj+2 +Uj+1 +Uj-1+Uj-2

: Uxxx =
‘ o 2(AX )2

Fig. 1 Schematic illustration of an internal undular bore propagates over aj indicates the position on theaxis.AX is the step-size for
varying slope the spatial axis. Hence, the MOL approximation for the
veKdV equation (2) is given by

1755



UtV +U+U
2(AX)?
= U;).

We apply the classical™order Runge-Kutta method to
solve the time integration.

I1l. RESULTS ANDDISCUSSION

In this section, we present the numerical results of internal
undular bores evolving over two different kinds of slowly
varying depth region, i.e. slowing increasing slope and
slowing decreasing slope. In order to generate a fully
developed undular bore in our problem, the initial condition
of veKdV equation is taken as

U(X,T=0) :2[1— tan?{l

)

3

whereb is the height of the sharp step. Here, we consider
two values forb, i,e,b = 0.15 andb = 0.25 so that we have
KdV-type solitary wave (see Fig. 2(a)) and a table-top
solitary wave (see Fig. 2(b)) as the leading wave of internal
undular bore. The depth of the top laydi,= 1.5 while the
bottom layer has depti, = 1.0.

T = 6000 T = 5000
04 : 0.4, —
03 03 || ‘
_ 0.2] l . 02} ‘
01 m 0.1
_ . |
-1000 0 1000 -1000 0 1000
b's X
(@) (b)

Fig. 2 The structure of internal undular bore: (a) KdV-type internal undular
bore wheréo = 0.15; (b) Table-top internal undular bore where0.25

The KdV-type internal undular bore has amplitude of
Ujmo =20=0.3,
at the leading edge. Due to the limiting amplitude, i.e.

-a -
UIimO = 7 =0.382 {,

the lead wave of the internal undular bore is a table-top

like an isolated solitary wave as it evolves through the

variable topography region and thus a solitary wavetrain is
generated. On the new region with constant depth, the
undular bore retains its structure, i.e. a slowly modulated
nonlinear periodic wavetrain. The depth variation does not
affect jump across the undular bore after the slope (see Fig.
3). The generation of solitary wavetrain has been observed
as well when a surface undular bore evolves over a slowly
increasing depth region. Also, we observed that there is an
occurrence of multi-phase behaviour during the evolution

process of the internal undular bore. The multi-phase

interaction continues for quite some time and it diminishes

after the transformed bore has settled down on the new
constant region. The amplitude of the lead wave of the

transformed bore remains the same as in the initial undular
bore.
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Fig. 3 2D plot of an undular bore with a leading KdV-type solitary wave at
the leading edge evolving over a slowly increasing slope

For table-top internal undular bore, i.e. when 0.25, the

solitary. Our main concern on this paper is to see how theleading table-top solitary wave also behaves like an isolated

varying depth will affect the behaviour of the undular bore
as it propagates over the slope.
A. Slowly increasing slope

In this case, we assume the profile for the bottom layer
varies as follows

1.0 :0<T <100,
H,(T) ={-0.00006 + 1.006 :108T < 510
0.7 - T >5100.

Whenb = 0.15, our numerical result shows that the solitary

solitary wave such that it deforms adiabatically and reaches

a new amplitude limit, i.eUjm1 = 0.5381 after the slope.
There is no solitary wavetrain generation in this case
because the amplitude of the lead solitary wave has hit the
limiting value throughout the entire evolution. Similarly, we
observe multi-phase behaviour during the entire evolution of
the internal undular bore. Fig. 4 shows the evolution of the
table-top undular bore over the slowly increasing slope
region.

B. Slowly decreasing slope

wave at the leading edge deforms adiabatically and behaves For the case where the slope is decreasing slowly, there
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Fig. 4 2D plot of an undular bore with a leading table-top solitary wave
evolving over a slowly increasing slope

1) by <Hi:

Here, depth profile of the bottom layer is assumed to vary
according to

1.0 :0<T <100,
H,(T)=40.00008 + 0.99 :100<T < 5100,
1.3 : T >5100.

When b = 0.15, one can observe the amplitude of the
leading wave is decreasing as it enter the increasing deptt
region (see Fig. 3 = 2500 andrl = 5000). Therefore, there
is no series of solitary wave is generated ahead of the
transformed bore. However, the interaction between the
leading wave and the nonlinear wavetrain behind it will
prevent the amplitude continues to decrease. Instead it will
cause the leading wave to grow and thus the leading wave
amplitude will increase. This is clearly shown in Fig. S at
= 10000. On the new area with constant depth at large time
the transformed bore consists of two distinct wave structures
i.e. a new undular bore at the front and weakly nonlinear
wave structure which is a part of the initial internal undular
bore at the rear part of the transformed bore.
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Fig. 5 2D plot of an undular bore with a leading KdV-type solitary wave at
the leading edge propagating over a slowly decreasing slope heig;
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Whenb = 0.25, the new limiting amplitude after the slope amplitude after the slope, i.J;;,; =0.0855. The new

limiting amplitude is smaller than the jump across the bore
Ujimy =0.2057, for both types of undular bore, ile= 0.15 and = 0.25. At
which is smaller than the jump across the undular boreq i.e. large time, the structure of these two internal undular bores
= 0.25. Therefore, we do not observe nonlocal interaction atis diminishing. Fig. 7 and Fig. 8 show the evolution of KdV-
the leading edge. Instead, the leading wave amplitudetype undular bore and table-top undular bore over the slowly
decreases and reaches the new limiting amplitude value as ilecreasing slope region.
enters the decreasing slope region.

is

Thus, instead of growing leading solitary wave, we T-0
observe the formation of a step-like wave propagating over o
time. The whole structure of the initial undular bore is s 02 4
slowly destroyed as time increases. Fig. 6 shows the
evolution of the internal undular bore over a slowly T T o 2000
X

decreasing slope region.
T = 2500
04
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Fig. 8 2D plot of an undular bore with a leading table-top solitary wave at
- 02| ﬂm‘" ‘ the leading edge propagating over a slowly decreasing slope heigé,
I
-102000 -10000 -8000 -6000 . -4000 -2(500 0 2‘;00 3) hl > Hl'
T:/}n(mu Lastly, we suppose that the depth of bottom layer after
o4 slope is greater than the depth of top layer. Hence, the
 oz| profile for H,(T) is given by
ol —
| | 1.0 :0<T <100,
-12000 -10000 -8000 -6000 x -4000 -2000 0 2000 HZ(T) = 0.00014' + 0.986 - 1mT < 5100’
T = 20000 1.7 : T =25100.
04
In this case, the transformation of internal undular bore
S — involves polarity change for both cases, he: 0.15 antb =
o | 0.25 when they propagate into the region where the deepness
A 0 2000 of bottom layer after the slope is greater than the deepness of

Fig. 7 2D plot of an undular bore with a leading KdV-type solitary wave at top Ia}{er' The ,pOIarlty of the_ I_ntemal undUIa,r bore 1S
the leading edge propagating over a slowly decreasing slope wheig; determined by Sign of the coefficient of the non“nea”ty
term in veKdV equation. In this case, the polarity of the

In this scenario, we observe that for both table-top intérnal undular bore changes from positive to negative. As
undular bore and also KdV-type undular bore, the leadingthe initial internal undular bore evolves over the slowly
wave deforms adiabatically, and its amplitude decreases as iflécreasing slope region, the amplitude of the leading wave
enters the variable topography region. However, the leadingdecreases. Once the polarity has changed, an internal undular
wave does not interact with the nonlinear wavetrain at theP0re of depression is generated. We can observe the

rear part of the undular bore due to the new limiting transformed ?nterpal undular bore is riding a positive;
pedestal. As time increases, the transformed bore of negative
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polarity is slowly diminishing due to the pedestal. One could of the top layer, a transformed bore of negative polarity
observe that there is no change to the jump across theiding on a positive pedestal is observed. The transformed
transformed bore. These can be observed clearly through thdore is also diminishing as time increases.

2D plots of the numerical simulation of internal undular bore
in the propagation over slowly increasing slope region where
hy > Hj in Fig. 9 forb = 0.15 and Fig. 10 fdv = 0.25.
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Fig. 9 2D plot of an undular bore with a leading KdV-type solitary wave at
the leading edge evolving over a slowly decreasing slope herél;

IV. CONCLUSION t
We have discussed the transformation of internal undular
bores over a slowly varying regions in a fluid system that (2]
consists of two layers of fluids in the framework of veKdV
equation. When the depth of the bottom layer decreased3]
slowly, the leading wave of the initial bore changes its form
adiabatically and a non-adiabatically respond is generated in[4]
the form of a solitary wavetrain in front of the transformed
bore. The long-time behaviour shows that the transformed|5]
bore consists a series of solitary waves at the front followed
by the transformed undular bore. However, no formation of
solitary wavetrain is observed for table-top undular bore. For
the slowly decreasing slope case where the depth of bottoni6]
layer fluid after the slope is smaller than the depth of top
layer fluid, we observe the generation of either weakly 7
nonlinear trailing wavetrain behind the transformed bore for
the KdV-type undular bore and the generation of a step-like
wave for table-top undular bore. When the depth of the
bottom layer after the slope is equivalent to the depth of the
top layer, we observe the diminishing initial undular bore
due to the new limiting amplitude value after the slope for [9]
both KdV-type and table-top undular bores. For the case
where the depth of the bottom layer is greater than the depth

(8]
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the leading edge propagating over a slowly decreasing slope i,
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