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Abstract— Internal undular bores have been observed in many parts of the world. Studies have shown that many marine structures 
face danger and risk of destruction caused by internal undular bores due to the amount of energy it carries. This paper looks at the 
transformation of internal undular bore in two-layer fluid flow under the influence of variable topography. Thus, the surface of the 
bottom is considered to be slowly varying. The appropriate mathematical model is the variable-coefficient extended Korteweg-de 
Vries equation. We are particularly interested in looking at the transformation of KdV-type and table-top undular bore over the 
variable topography region. The governing equation is solved numerically using the method of lines, where the spatial derivatives are 
first discretised using finite difference approximation so that the partial differential equation becomes a system of ordinary 
differential equations which is then solved by 4th order Runge-Kutta method. Our numerical results show that the evolution of 
internal undular bore over different types of varying depths regions leads to a number of adiabatic and non-adiabatic effects. When 
the depth decreases slowly, a solitary wavetrain is observed at the front of the transformed internal undular bore. On the other hand, 
when the depth increases slowly, we observe the generation of step-like wave and weakly nonlinear trailing wavetrain, the occurrence 
of multi-phase behaviour, the generation of transformed undular bore of negative polarity and diminishing transformed undular bore 
depending on the nature of the topography after the variable topography. 
 
Keywords— Internal undular bores; extended KdV equation; method of lines; two-layer fluid system; solitary wavetrain. 
 
 

I. INTRODUCTION 

Internal undular bores have been observed propagating in 
coastal ocean in many parts of the world [1]. An undular 
bore refers to a flow of oscillatory fluid connecting two 
different constant depth of streams. These two streams are 
connected by a hydraulic jump and propagate in horizontal 
velocity and exhibiting a solitary wave as the leading wave 
[2], [3]. The occurrence of internal undular bore can be 
generated by transcritical flow over topography [4]. In past 
few decades, the trace of internal undular bore have been 
found in some stratified fluid areas around the world, e.g. 
continental shelf off Point Sal, California [5], Japan/East Sea 
shelf-coastal region [6] and Peter the Great Bay [7]. Similar 
to internal waves, the occurrence of these strongly nonlinear 
internal elevation waves packets or internal undular bores 
have been studied to know the impacts affect to the sea 
currents, fluid density, and temperature fields of the fluid [6], 
[8]. Moreover, their propagation in the fluid layers 
considerably affects the vertical mixing of nutrient contents, 

transmission of acoustic wave and dominate the direction of 
the fluid-flow under water [9]–[11]. 

The appropriate model to describe the nonlinear internal 
waves in a fluid system with stratification is the extended 
Korteweg–de Vries (eKdV) equation [12], [13]. This model 
is extended from the well-known Korteweg–de Vries (KdV) 
equation, which is widely used to describe the nonlinear 
shallow water waves. Here, internal undular bores are 
considered to be propagating in a system that consist of two 
layers of stratified fluid. Therefore, the KdV equation is not 
appropriate due to the difference of densities of both layers. 
When the difference is very small, the coefficient of 
nonlinearity term in the KdV equation is nearly vanished. 
Therefore, it is important to introduce an additional higher 
order nonlinear term in the KdV equation in order to raise up 
the nonlinearity effects for dynamic balancing with the 
dispersion effects [14], [15]. 

It is very important to study the behaviour of the internal 
waves as they pose danger to the buildings or structures near 
the coastal regions due to it carried large amount of energy 
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[16]. To prevent the coastal erosion, there are many coastal 
structures built to reduce the impact from internal waves for 
instances, concrete walls [17], stone revetments and tetra 
pods [18]. Furthermore, internal undular bores are evolving 
over different kinds of variable depth regions. The primary 
aim of this article is to look at how the variable topography 
influences the evolution of internal undular bores. In the next 
section, the problem formulation and the numerical method 
adopted in this study are discussed. Numerical results are 
presented in Section III and the final section would be our 
conclusion.  

II. MATERIALS AND METHOD 

The mathematical model for nonlinear internal waves in 
stratified fluid over variable topography is the variable 
coefficient eKdV (veKdV) equation [19].  
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where A denotes the wave amplitude. x, and t are the 
temporal and spatial variables respectively. Here, the speed 
of the linear long wave is represented by c(x). Q(x) 
represents the linear modification factor. It is defined such 
that Q−2A2 is the linear long wave action flux. There are 
three important coefficients i.e. μ(x), μ1(x) denote the 
nonlinearity terms and δ(x) denotes the dispersive term. The 
coefficients of the veKdV equation, i.e. μ, μ1, and δ are 
slowly varying functions of x and are defined by 
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The densities of the fluid for both layers are constants 
denoted by ρ1 and ρ2 respectively. H1 and H2 denote the 
depths for upper and lower layers respectively. We suppose 
that H1 remains constant all the time and H2(x) changes 
monotonically varies from h0 to h1 in the region x0 < x ≤ x1.  

 

 
Fig. 1 Schematic illustration of an internal undular bore propagates over a 
varying slope 
 

 
 

Here, we shall suppose x0 ≥ 0 and x1 − x0 >> 1. We will 
consider two kindss of variable region in the interval x0 < x ≤ 
x1: 

• slowly increasing slope 
• slowly decreasing slope 

The schematic of our problem is illustrated in Fig. 1. 
The first two terms in equation (1) are the dominant 

terms. Therefore, equation (1) can be transfromed using the 
following new variables [19], 
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By substituting the new variables into the veKdV equation 
yields the following equation, to the same leading order of 
approximation where equation holds 

2 0T X X XXXU UU U U Uα β λ+ + + = ,  (2) 

where 

µα Q= ,      1
2µβ Q= ,      δλ = . 

In terms of the new variables after the tranformation, α, β, 
and λ are functions of T. For the depth profile, we consider 
H1 = 1.5 is constant for all T and H2 varies according to  
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where f(T) is a function in terms of T. 
The oscillatory structure of the undular bore can be 

evolved from a simple unit step using Heaviside function. 
Here, we shall consider the initial condition for the veKdV 
equation (2) to be in the form of a sharp step, 

0 ( )U U P X= − . 

Here, we let U0 > 0 and P is a Heaviside function to generate 
a hydraulic jump connects two different constant depth. 
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This study adopts the method of lines (MOL) in order to 
solve the veKdV equation (2) numerically. First, we make 
approximation to the spatial derivatives so that the governing 
equation (2) will be reduced into a set of ordinary 
differential equations (ODEs). Then, this system of ODEs 
can be solved by any time integrator. The MOL is widely 
used in solving many partial differential equations, e.g. the 
eKdV equation [20–21], KdV equation with forcing term 
[22], and forced KdVB equation [23]. To begin, we rewrite 
veKdV equation as follows 

XXXXXT UUUUUU λβα −−−= 2 . 

The spatial derivatives are discretized using central finite 
difference formulae as follows, 
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 j indicates the position on the X axis. ΔX is the step-size for 
the spatial axis. Hence, the MOL approximation for the 
veKdV equation (2) is given by 
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We apply the classical 4th order Runge-Kutta method to 
solve the time integration.  

III.  RESULTS AND DISCUSSION 

In this section, we present the numerical results of internal 
undular bores evolving over two different kinds of slowly 
varying depth region, i.e. slowing increasing slope and 
slowing decreasing slope. In order to generate a fully 
developed undular bore in our problem, the initial condition 
of veKdV equation is taken as  
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where b is the height of the sharp step. Here, we consider 
two values for b, i,e, b = 0.15 and b = 0.25 so that we have 
KdV-type solitary wave (see Fig. 2(a)) and a table-top 
solitary wave  (see Fig. 2(b)) as the leading wave of internal 
undular bore. The depth of the top layer, H1 = 1.5 while the 
bottom layer has depth H2 = 1.0. 
 

 
 (a) (b) 
Fig. 2  The structure of internal undular bore: (a) KdV-type internal undular 

bore where b = 0.15; (b) Table-top internal undular bore where b = 0.25 
 
The KdV-type internal undular bore has amplitude of  

lim0 2 0.3U b≈ = , 
at the leading edge. Due to the limiting amplitude, i.e.  

lim0 0.3827U
α
β

−≈ = , 

the lead wave of the internal undular bore is a table-top 
solitary. Our main concern on this paper is to see how the 
varying depth will affect the behaviour of the undular bore 
as it propagates over the slope.  

A. Slowly increasing slope  

In this case, we assume the profile for the bottom layer 
varies as follows 
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When b = 0.15, our numerical result shows that the solitary 
wave at the leading edge deforms adiabatically and behaves 

like an isolated solitary wave as it evolves through the 
variable topography region and thus a solitary wavetrain is 
generated. On the new region with constant depth, the 
undular bore retains its structure, i.e. a slowly modulated 
nonlinear periodic wavetrain. The depth variation does not 
affect jump across the undular bore after the slope (see Fig. 
3). The generation of solitary wavetrain has been observed 
as well when a surface undular bore evolves over a slowly 
increasing depth region. Also, we observed that there is an 
occurrence of multi-phase behaviour during the evolution 
process of the internal undular bore. The multi-phase 
interaction continues for quite some time and it diminishes 
after the transformed bore has settled down on the new 
constant region. The amplitude of the lead wave of the 
transformed bore remains the same as in the initial undular 
bore.  

 

 
Fig. 3  2D plot of an undular bore with a leading KdV-type solitary wave at 
the leading edge evolving over a slowly increasing slope 

 
For table-top internal undular bore, i.e. when b = 0.25, the 

leading table-top solitary wave also behaves like an isolated 
solitary wave such that it deforms adiabatically and reaches 
a new amplitude limit, i.e. Ulim1 = 0.5381 after the slope. 
There is no solitary wavetrain generation in this case 
because the amplitude of the lead solitary wave has hit the 
limiting value throughout the entire evolution. Similarly, we 
observe multi-phase behaviour during the entire evolution of 
the internal undular bore. Fig. 4 shows the evolution of the 
table-top undular bore over the slowly increasing slope 
region.  

B. Slowly decreasing slope  

For the case where the slope is decreasing slowly, there 
are three cases of the bottom layer to be considered here, i.e. 
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• h1 < H1, 
• h1 = H1, 
• h1 > H1. 

 

 
Fig. 4  2D plot of an undular bore with a leading table-top solitary wave 
evolving over a slowly increasing slope 

 
1) h1 < H1:  

Here, depth profile of the bottom layer is assumed to vary 
according to 
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When b = 0.15, one can observe the amplitude of the 
leading wave is decreasing as it enter the increasing depth 
region (see Fig. 5 T = 2500 and T = 5000). Therefore, there 
is no series of solitary wave is generated ahead of the 
transformed bore. However, the interaction between the 
leading wave and the nonlinear wavetrain behind it will 
prevent the amplitude continues to decrease. Instead it will 
cause the leading wave to grow and thus the leading wave 
amplitude will increase. This is clearly shown in Fig. 5 at T 
= 10000. On the new area with constant depth at large time, 
the transformed bore consists of two distinct wave structures, 
i.e. a new undular bore at the front and weakly nonlinear 
wave structure which is a part of the initial internal undular 
bore at the rear part of the transformed bore.  
 

 
Fig. 5  2D plot of an undular bore with a leading KdV-type solitary wave at 
the leading edge propagating over a slowly decreasing slope where h1 < H1 

 
Fig. 6  2D plot of an undular bore with a leading table-top solitary wave at 
the leading edge propagating over a slowly decreasing slope where h1 < H1 
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When b = 0.25, the new limiting amplitude after the slope 
is 

lim1 0.2057U ≈ , 
which is smaller than the jump across the undular bore, i.e. b 
= 0.25. Therefore, we do not observe nonlocal interaction at 
the leading edge. Instead, the leading wave amplitude 
decreases and reaches the new limiting amplitude value as it 
enters the decreasing slope region.  

Thus, instead of growing leading solitary wave, we 
observe the formation of a step-like wave propagating over 
time. The whole structure of the initial undular bore is 
slowly destroyed as time increases. Fig. 6 shows the 
evolution of the internal undular bore over a slowly 
decreasing slope region. 

 
2) h1 = H1:  

Next, we suppose that the depth of bottom layer after the 
slope is equivalent to the depth of top layer. 
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Fig. 7  2D plot of an undular bore with a leading KdV-type solitary wave at 
the leading edge propagating over a slowly decreasing slope where h1 = H1 

 
In this scenario, we observe that for both table-top 

undular bore and also KdV-type undular bore, the leading 
wave deforms adiabatically, and its amplitude decreases as it 
enters the variable topography region. However, the leading 
wave does not interact with the nonlinear wavetrain at the 
rear part of the undular bore due to the new limiting 

amplitude after the slope, i.e. lim1 0.0855.U ≈  The new 

limiting amplitude is smaller than the jump across the bore 
for both types of undular bore, i.e. b = 0.15 and b = 0.25. At 
large time, the structure of these two internal undular bores 
is diminishing. Fig. 7 and Fig. 8 show the evolution of KdV-
type undular bore and table-top undular bore over the slowly 
decreasing slope region. 
 

 
Fig. 8  2D plot of an undular bore with a leading table-top solitary wave at 
the leading edge propagating over a slowly decreasing slope where h1 = H1 

 
3) h1 > H1:  
Lastly, we suppose that the depth of bottom layer after 

slope is greater than the depth of top layer. Hence, the 
profile for ����� is given by 

2
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In this case, the transformation of internal undular bore 
involves polarity change for both cases, i.e. b = 0.15 and b = 
0.25 when they propagate into the region where the deepness 
of bottom layer after the slope is greater than the deepness of 
top layer. The polarity of the internal undular bore is 
determined by sign of the coefficient α of the nonlinearity 
term in veKdV equation. In this case, the polarity of the 
internal undular bore changes from positive to negative. As 
the initial internal undular bore evolves over the slowly 
decreasing slope region, the amplitude of the leading wave 
decreases. Once the polarity has changed, an internal undular 
bore of depression is generated. We can observe the 
transformed internal undular bore is riding a positive 
pedestal. As time increases, the transformed bore of negative 
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polarity is slowly diminishing due to the pedestal. One could 
observe that there is no change to the jump across the 
transformed bore. These can be observed clearly through the 
2D plots of the numerical simulation of internal undular bore 
in the propagation over slowly increasing slope region where 
h0 > H1 in Fig. 9 for b = 0.15 and Fig. 10 for b = 0.25.  

 

 
Fig. 9  2D plot of an undular bore with a leading KdV-type solitary wave at 
the leading edge evolving over a slowly decreasing slope where h1 > H1 

IV.  CONCLUSION  

We have discussed the transformation of internal undular 
bores over a slowly varying regions in a fluid system that 
consists of two layers of fluids in the framework of veKdV 
equation. When the depth of the bottom layer decreases 
slowly, the leading wave of the initial bore changes its form 
adiabatically and a non-adiabatically respond is generated in 
the form of a solitary wavetrain in front of the transformed 
bore. The long-time behaviour shows that the transformed 
bore consists a series of solitary waves at the front followed 
by the transformed undular bore. However, no formation of 
solitary wavetrain is observed for table-top undular bore. For 
the slowly decreasing slope case  where the depth of bottom 
layer fluid after the slope is smaller than the depth of top 
layer fluid, we observe the generation of either weakly 
nonlinear trailing wavetrain behind the transformed bore for 
the KdV-type undular bore and the generation of a step-like 
wave for table-top undular bore. When the depth of the 
bottom layer after the slope is equivalent to the depth of the 
top layer, we observe the diminishing initial undular bore 
due to the new limiting amplitude value after the slope for 
both KdV-type and table-top undular bores. For the case 
where the depth of the bottom layer is greater than the depth 

of the top layer, a transformed bore of negative polarity 
riding on a positive pedestal is observed. The transformed 
bore is also diminishing as time increases. 

 

 
Fig. 10  2D plot of an undular bore with a leading table-top solitary wave at 
the leading edge propagating over a slowly decreasing slope where h1 > H1 
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