

Vol.10 (2020) No. 1

ISSN: 2088-5334

Univariate Financial Time Series Prediction using Clonal Selection
Algorithm

Ammar Azlan#1, Yuhanis Yusof#2, Mohamad Farhan Mohamad Mohsin#3

#School of Computing, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
E-mail: 1ammar_azlan1@ahsgs.uum.edu.my; 2yuhanis@uum.edu.my; 3farhan@uum.edu.my

Abstract— The ability to predict the financial market is beneficial not only to the individual but also to the organization and country.
It is not only beneficial in terms of financial but also in terms of making a short-term and long-term decision. This paper presents an
experimental study to perform univariate financial time series prediction using a clonal selection algorithm (CSA). CSA is an
optimization algorithm that is based on clonal selection theory. It is a subset of the artificial immune system, a class of evolutionary
algorithms inspired by the immune system of a vertebrate. Since CSA is an optimization algorithm, the univariate financial time
series prediction problem was modeled into an optimization problem using a weighted regression model. CSA was used to search for
the optimal set of weights for the regression model to generate prediction with the lowest error. Three data sets from the financial
market were chosen for the experiments of this study namely S&P500 price, Gold price, and EUR-USD exchange rate. The
performance of CSA is measured using RMSE. The value of RMSE for a problem is related to the maximum and minimum value of
the data set. Therefore, the results were not compared to other data sets. Instead, it is compared to the range of values of the data sets.
The result of the experiments shows that CSA can make decent predictions for financial time series despite being inferior to ARIMA.
Hence, this finding implies that CSA can be implemented on a univariate financial time series prediction problem given that the
problem is modeled as an optimization problem.

Keywords—artificial immune system; clonal selection algorithm; financial time series; prediction; univariate.

I. INTRODUCTION

The financial market is a marketplace where products
under the financial sector are traded. These products include
capital, commodity, money, derivatives, futures, insurance,
and foreign exchange. Stock and bond are products traded
under the capital market [1]. Some financial markets are
small and involve few activities while some financial
markets like the New York Stock Exchange (NYSE) deal
with many transactions worth trillions of dollars daily [2].
The high profitability of the financial market has attracted
many traders and investors to beat the market by forecasting
its movement. Hence, many studies have come up with
forecasting techniques and models to produce the highest
forecasting accuracy with the intention to improve profit and
reduce risk in investment.

Kwon et al. [3] conducted research to compare a machine
learning model called a neural network with a linear
regression model called ordinary least square. Their result
using a t-test shows that machine learning performed
significantly better than linear regression. This finding
supports an earlier study by Qian [4] which compared the
prediction precision of the traditional time series model with
the machine learning model. Qian mentioned that the

performance of traditional time series models like ARIMA
and GARCH still requires much improvement despite being
researched for a long time. On the other hand, Qian added
that machine learning displays incredible performance in
regression, classification, and prediction of financial time
series despite being emerged recently. A result of an
experiment using real data sets proved that the precision of
machine learning far surpasses traditional models.

Machine learning is an application of artificial
intelligence that enables systems to solve problems from a
given set of rules and examples instead of explicitly
programming the systems with a specific solution. It has
been applied in many areas such as marketing, banking,
healthcare, business, stock market, and weather [5]. Machine
learning approaches are consistently among the top
performers for financial market price prediction. One of the
widely used approaches is time series forecasting, which
applies a model to predict future values based on previously
observed values [6]. However, better results were obtained
from hybrid forecasting models [5]. Evolutionary algorithm
is one of the approaches that has been successfully applied in
financial market prediction.

The evolutionary algorithm (EA) is a subset of artificial
intelligence that is inspired by biological evolution. It

151

mimics the mechanism of biological evolution such as
reproduction, mutation, recombination, and selection.
Possible solutions to the optimization problem are
represented as an element in a population while the quality
of the solutions is represented as the fitness function. The
population evolves through a series of mechanisms
mentioned earlier. An example of a well-known EA is the
genetic algorithm (GA). GA is an optimization method that
is inspired by the process of natural selection from Darwin’s
theory of evolution. A solution, which is represented by a
chromosome, evolves through a series of operation consists
of selection, crossover, and mutation. Some studies
implement GA on time series forecasting [7]–[9]. Despite its
performance, GA suffers from complexity, given the many
operations it must perform. A simpler alternative to GA is an
artificial immune system.

The artificial immune system (AIS) is a computational
intelligence approach that is inspired by the immune system
of a vertebrate. It can self-organize, learn, memorize, and
adapt besides having the characteristics of robustness and
scalability [10]. It can be categorized into five types which
are Clonal Selection Algorithm (CSA), Negative Selection
Algorithm (NSA), Immune Network Algorithm (INA),
Danger Theory Algorithm (DTA), and Dendritic Cell
Algorithm (DCA) [11]. These algorithms were inspired by
theories from immunology namely clonal selection theory,
negative selection theory, danger theory, and artificial
immune network theory. It gained popularity by efficiently
solving numerous optimization problems [12] and has been
applied in numerous domains such as computer security
[13], optimization [14], disease diagnosis [15] and
bankruptcy prediction [15]. Most of its achievements were
contributed by CSA [16].

CSA or sometimes referred to as CLONALG (CLONal
selection ALGorithm) is a model inspired by clonal selection
theory from the immunology domain. This theory indicates
that when a foreign substance called antigen is detected, it
induces an immune response in the body called an antibody.
The best match between an antigen and an antibody which is
called affinity will cause the antibody to multiply in order to
counteract the foreign invasion rapidly. This multiplication
is performed through a process called cloning. Next, the
cloned antibodies hypermutate in order to increase their
receptor population [17]. CSA consists of four components
which are selection, clonal expansion, hypermutation, and
re-selection [18]. Fig. 1 illustrates the flow chart of CSA
[19].

Like other EA, CSA starts its operation with an initial
population. A set of possible solutions is generated randomly
to create an initial population. This initial population is
represented as a population of antibodies. Then the
population is evaluated against the antigen. The degree of
matching between an antibody and an antigen is called
affinity. Based on the affinity, a subset of the initial
population is selected and cloned to a specific cloning rate.
This will generate another population called the clone
population. Next, the clone population will maturate through
the process of hypermutation, where some elements in the
population will change its value according to a pre-set
probability. Then, the mature clone population is re-
evaluated and re-selected according to the affinity. The

process is iterated until the goal is achieved. Usually the goal
can be a minimum objective value, a convergence of the
objective value (no or little change over certain period), or a
pre-set number of iterations.

Fig. 1 Flow Chart of CSA

In this study, an evolutionary algorithm inspired by the

clonal selection theory called CSA is proposed to solve the
problem of univariate financial time series prediction. This
algorithm is chosen because based on a survey by Luo and
Lin [20], CSA has been applied to many optimization
problems, including constrained optimization [21],
combinatorial optimization [22], and nonlinear optimization
[23]. Furthermore, according to Hu, Sun, Nie, Li, and Liu
[24], CSA is less complicated than GA because it does not
have crossover operation which reduces the computational
cost. They also added that CSA is better than Ant Colony
Optimization for continuous problems.

Since CSA is an optimization algorithm, the prediction
problem will be modeled as an optimization problem. This is
achieved by optimizing the weights of a regression model.
First, the actual time series is plotted. Next, the predicted
time series generated by the regression model with initial
weight is plotted. Then, CSA will search for the optimal set
of weights that returns the minimal objective value which is
RMSE. Finally, the model with an optimized set of weight is
tested on a new data set that has not been exposed to the
model during the training phase. The performance of CSA
on univariate financial time series prediction problem is
evaluated by plotting line graphs and calculating RMSE.

The rest of this paper is organized as follows: First,
Section II discusses materials and methods. It covers the
preparation of the data sets used in the experiments from
data collection to data pre-processing. It also covers the
parameter setting of CSA and method to evaluate the

152

experiments. The section ends with the specification of the
machine used to perform the experiments. Second, Section
III presents the result and discussion. It includes all results
from all data sets. Then, the section ends with a discussion
based on the findings. Third, Section IV presents the
conclusion. It is a short section that concludes the findings of
this study, provides the implications of the findings, and
suggestion for possible future works.

II. MATERIALS AND METHOD

A. Data Sets Preparation

1) Data Collection: To perform this experiment,
historical data from three financial markets were retrieved
from Yahoo Finance namely S&P500 price index, Gold
price, and EUR-USD exchange rate. The data sets consist of
seven variables which are labeled as Date for transaction
date, Open for opening price on the Date, High for the
highest price on the Date, Low for the lowest price on the
Date, Close for the closing price on the Date, Adj Close for
adjusted closing price on the Date, and Volume for the
transaction volume on the Date. The data sets also consist of
2,516 observations for each record on the working day of a
week from 31 December 2008 to 28 December 2018. The
sample of the raw data sets from S&P500 is shown in Table
I.

TABLE I
SAMPLE OF RAW DATA SET FROM S&P500

Date Open High Low Close Adj
Close Volume

2008-12-31 890.59 910.32 889.67 903.25 903.25 -122027296

2009-01-02 902.99 934.73 899.35 931.80 931.80 -246697296

2009-01-05 929.17 936.63 919.53 927.45 927.45 1118942704

2018-12-27 2442.50 2489.10 2397.94 2488.83 2488.83 -198357296

2018-12-28 2498.77 2520.27 2472.89 2485.74 2485.74 -592347296

2) Data Pre-processing: The first pre-processing is
dimension reduction. The acquired data sets consist of seven
variables namely Date, Open, High, Low, Close, Adj Close,
and Volume as shown in Table I. Since this study focuses on
univariate time series prediction which involves only a
single variable, the dimension of the data was reduced to two
variables namely Date and Close. The date is kept to
maintain the sequence of the time series. The main variable
to calculate the time series prediction is Close. The sample
of the final data set from S&P500 that was fed into the
algorithm is shown in Table II.

The next pre-processing is data splitting where the data
set was split into a training data set and testing data set. This
study used three training-to-testing (training: testing) ratio
setting which is 70:30, 80:20, and 90:10. The training data
set was used to train the algorithm where the optimal set of
weight was discovered throughout the iterations of the
algorithm. On the other hand, the testing data set was used to
test the prediction formula with the discovered optimal
weight during training on a new set of data. By testing on a
new data set that is not exposed during training, the
performance of the algorithm could be differentiated from an

overfitting case where the algorithm fit too well to the
training data but performed poorly on new data. The
isolation of testing data set from a training data set could
also ensure generalization.

TABLE II
SAMPLE OF FINAL DATA SET FROM S&P500

Date Close

2008-12-31 903.25

2009-01-02 931.80

2009-01-05 927.45

2018-12-27 2488.83

2018-12-28 2485.74

B. Algorithm Design

1) Clonal Selection Algorithm: This study adapted the
standard CSA as proposed by de Castro and Von Zuben [25]
to solve the univariate financial time series problems. The
algorithm receives six inputs namely antibodies Ab, the
number of generations Ngen, population size N, selected
population size n, random population size d, problem size L,
and cloning rate β. The output of the algorithm is antibodies
Ab and fitness value f. The algorithm starts by generating
Ab which is a population of initial solutions with the size of
N times L. The solutions in Ab are generated randomly.
Then for every Ngen, the Ab is decoded to generate f. Based
on f and n, a subset of Ab which is Abn is selected. Next,
Abn is cloned according to β and f to generate the cloned
population C. C is hypermutated based on f to generate a
matured population C*. The fitness value of C* is generated
by decoding C*. Based on C* and f*, n number of solutions
are selected and inserted into Ab. Another population is
randomly generated based on d and L to produce Abd. Ab
will be replaced with Abd based on f i.e. Abd with better f
will replace Ab. Finally, Ab is decoded to generate f and
both Ab and f are presented as output. The pseudo-code for
the algorithm is shown in Fig. 2.

Fig. 2 Pseudo Code of CSA

Input : Ab,Ngen,N,n,d,L,β
Output : Ab,f

Ab := rand(N,L);

for t = 1 to Ngen,
 f := decode(Ab);
 Abn := select(Ab,f,n);
 C := clone(Abn,β,f);
 C* := hypermut(C,f);
 f* := decode(C*);
 Abn := select(C*,f*,n);
 Ab := insert(Ab,Abn);
 Abd := generate(d,L);
 Ab := replace(Ab,Abd,f);
end;

f := decode(Ab);

153

2) CSA Parameter Setting: The first parameter is the
problem size which is based on the problem. CSA is an
optimization algorithm. Therefore, the problem for this study
which is the univariate financial time series prediction needs
to be modeled into an optimization problem using a
regression model [26] as shown in equation 1.

 ��� � ������ � �	���	 � �
 (1)

The predicted value, ��� is the summation of two-time
lags, ���� and ���	 with three weights, ��, �	, and �
. This
study used CSA to find the optimal set of weight, (��, �	, �
) that will return the closest predicted value, ��� from the
actual value, �. Therefore, the problem size for this
experiment is 3, which represents the three weights.

The next parameter is the population size, which is set to
100. Population size is the size of possible solutions at all
times which means throughout the cloning and
hypermutation; there are some elements added and some
elements removed from the population. The number of
elements to be selected for cloning is determined by the
selection size which is set to 10. The cloning rate is set to 20
which means, each selected element will be cloned up to 20
times. The mutation rate, which is set to 0.2, on the other
hand, is the rate of the hypermutation operator on the cloned
population. This is followed by a random cell number which
is set to 20.

The objective value for this algorithm is the RMSE which
is explained in Section C. The objective of the optimization
algorithm, which in this study is CSA, is to find the
minimum value of RMSE, which is 0. This means that the
CSA able to predict with zero highly unlikely error
prediction. Therefore, this study also set another control
parameter which is the stopping condition to 1000. This
parameter is to ensure that the algorithm will not iterate
infinitely. Instead, it will stop after 1000 iterations even if it
does not reach the minimum objective value. The parameter
setting for this experiment is summarized in Table III.

TABLE III
PARAMETER SETTING

Parameter Value

problem_size 3

population_size 100

selection_size 10

clone_rate 20

random_cells_num 20

mutation_rate 0.2

stop_codition 1000

C. Evaluation

The performance of CSA is measured by the difference
between the predicted value from the actual value. Many
metrics could calculate this measurement like MAE, MAPE,
and RMSPE. This study deployed Root Mean Square Error
(RMSE) to evaluate the performance of CSA. The equation
for RMSE is shown in (2).

 ��� � �∑ �������������
� (2)

Based on (2), the difference between the predicted value
at time �, ��� and actual value at time �, �� is squared for
every time point from � � 1 to � � �. Then, the values for
the whole time series are added and divided by the number
of time points in the time series, � to get the average error.
Lastly, the square root of the average error is calculated to
produce the value of RMSE for the prediction.

In addition to using metric, the performance of CSA is
also evaluated by comparing it with a benchmark model.
This paper used the AutoRegressive Integrated Moving
Average (ARIMA) as the benchmark. ARIMA is a popular
and widely used statistical model for time series prediction.
It contains three parameters called p, d, and q in the setting
of ARIMA(p,d,q). The ARIMA setting that is used in this
paper is ARIMA(3,1,0).

D. Experiment setup

The algorithm for this paper was developed in Python 3
programming language on Jupyter Notebook IDE 5.7.6. The
experiments were executed on a desktop computer with
Intel® Core™ i7-4770 CPU @ 3.40GHz processor, 8.00GB
RAM, Windows 10 Professional 64-bit operating system,
AMD Radeon™ HD 8490 graphic card, and 500GB HDD
storage. The algorithm was trained and tested on three data
sets namely S&P500, Gold, and EUR-USD.

III. RESULTS AND DISCUSSION

This study run experiments to determine the performance
of CSA on univariate financial time series using data from
S&P500 index price, Gold price, and EUR-USD exchange
rate. The performance of the algorithm was measured using
RMSE. The actual and predicted time series for each data set
were plotted on three separate line graphs; one graph for
each data set as shown in Fig. 3, Fig. 4, and Fig. 5 for
S&P500, Gold, and EUR-USD, respectively.

Fig. 3 Line graph of actual and predicted time series for S&P500

Fig. 3 illustrates the line graph for the S&P500 price time

series. The actual time series is plotted using the blue line
while the predicted time series is plotted using the red line.
The RMSE for prediction of S&P500 is 22.439 which means
in average, the predicted price of the S&P500 index

154

produced by CSA has a variance of USD22.44 from the
actual price.

Fig. 4 Line graph of actual and predicted time series for Gold

Fig. 4 illustrates the line graph for the Gold price time

series. The actual time series is plotted using the blue line
while the predicted time series is plotted using red line. The
RMSE for prediction of the Gold price is 16.890 which
means in average, the predicted price of Gold produced by
CSA has a variance of USD16.89 from the actual price.

Fig. 5 Line graph of actual and predicted time series for EUR-USD

Fig. 5 illustrates the line graph for the EUR-USD

exchange rate time series. The actual time series is plotted
using the blue line while the predicted time series is plotted
using the red line. The RMSE for prediction of EUR-USD
exchange rate is 0.0102 which means in average, the
predicted exchange rate of EUR-USD produced by CSA has
a variance of USD0.01 from the actual exchange rate.

Based on the obtained results, it can be concluded that
these experiments had achieved the objective of this study
which is to perform univariate financial time series
prediction using CSA. By comparing the pattern of the
predicted time series (red line) with the original time series
(blue line) plotted in the line graphs, as illustrated in Fig. 3,
Fig. 4, and Fig. 5, it is learned that the predicted values
generated by CSA carefully follow the actual values. This
finding is an indication that CSA manages to capture the
movement of the time series hence able to make a good
prediction. Moreover, CSA even able to follow the rapid
movement of Gold price around time steps 30 to 140 and

240. The maximum value, minimum value, range of value,
and RMSE for each of the data sets for the experiments are
summarized in Table IV.

TABLE IV
EXPERIMENTAL RESULTS OF UNIVARIATE FINANCIAL TIME SERIES

PREDICTION USING CLONAL SELECTION ALGORITHM ON S&P500, GOLD,
AND EUR-USD EXCHANGE RATE

Data Set Max Min Range RMSE

S&P500 2930.75 676.53 2254.22 22.439

Gold 126.88 13.12 113.76 16.890

EUR-USD 1.512791 1.039047 0.473744 0.0102

Based on Table IV, it is learned that the range of RMSE is

relative to the range of the value of the data set. RMSE for
S&P500 is the highest since its range of values is also the
highest. Similarly, RMSE for EUR-USD is the smallest
because its range of values is also the smallest. Therefore, a
comparison between different data sets cannot be performed
with RMSE. However, by comparing RMSE with the range
of each data set, it is learned that the errors are small with
the highest is not more than 20% for Gold and not more than
5% for S&P500 and EUR-USD. Overall, CSA successfully
generates a decent prediction model.

To further evaluate the performance of CSA, this study
ran several experiments with different training-to-testing
ratio consists of 70:30, 80:20, and 90:10. This study also ran
an experiment using ARIMA to be a benchmark for CSA.
The data sets for ARIMA were also split into different
training-to-testing ratio like the CSA setting to have a fair
comparison. The results of these experiments are recorded in
Table V with the best result for each model and each data set
being bolded.

TABLE V
COMPARISON OF RMSE BETWEEN CSA AND ARIMA WITH DIFFERENT

DATA SET AND TRAINING-TO-TESTING RATIO

Data Set

RMSE

CSA ARIMA

70:30 80:20 90:10 70:30 80:20 90:10

S&P500 23.852 22.439 30.070 20.188 21.695 28.900

Gold 12.891 16.890 20.170 11.224 13.623 19.205

EUR-USD 0.0302 0.0102 0.0103 0.0054 0.0053 0.0053

Based on the result in Table V, it is learned that the

ARIMA model dominates overall performance. However,
the performance of the CSA model surpasses the
performance of the ARIMA model when compared against
the difference ratio. This differences in performance between
ratio indicate that the ratio of training-to-testing data set
influence the performance of a model. Therefore, it is
essential to find the best ratio to optimize the performance of
a model and to compare different models with the same
ratio.

Another analysis that could be learned from Table V is
that the performance of each model for each ratio does not
return the best result for every data set. For the CSA model,

155

the best ratio for S&P500 and EUR-USD data sets is 80:20
while for Gold data set is 70:30. For the ARIMA model, the
best ratio for S&P500 and Gold data sets is 70:30 while for
EUR-USD data set is 80:20 and 90:10. These findings
concluded that the data set also affects the performance of a
model.

IV. CONCLUSION

This paper presents an experimental study on univariate
financial time series forecasting using clonal selection
algorithm. Three data sets from the financial market were
chosen for the experiments namely S&P500 index price,
Gold price, and EUR-USD exchange rate to represent the
financial market. Based on the result of the experiments
which is illustrated in line graph and quantified using
RMSE, it is learned that CSA can make decent predictions
for financial time series. This finding implies that the
proposed algorithm which is CSA can be implemented on a
univariate financial time series prediction problem given that
the problem is modeled as an optimization problem.
However, CSA could not surpass the performance of widely
used statistical models like ARIMA. Further research can be
explored from the finding of this study such as running
experiments using different experiment settings like number
of iterations, number of initial populations, and size of the
window to improve the performance of CSA. Furthermore,
the proposed algorithm can be tested on data sets from other
domains such as medical, geographical, and astronomy.
Also, more research on related studies that implemented
CSA would be a good review of its current state of the art.
Finally, since CSA results are not better than ARIMA, there
is a need to integrate it with machine learning techniques
which have shown success in forecasting.

ACKNOWLEDGMENT

The Ministry of Education Malaysia has funded this study
under the Fundamental Research Grant Scheme (S/O Code:
13820).

REFERENCES
[1] R. B. Singh, “Financial Markets,” in The DBS Handbook of Finance,

1st ed., DBS Imprints, 2014, p. 159.
[2] W. Kenton, “New York Stock Exchange - NYSE,” 2018. .
[3] O. Kwon, S. Rahmatian, A. Iriberri, and Z. Wu, “Comparison of

Neural Network and Ordinary Least Squares Models in Forecasting
Chinese Stock Prices,” Int. J. Bus. Econ., vol. 1, no. 1, pp. 1–17,
Mar. 2018.

[4] X.-Y. Qian, “Financial Series Prediction: Comparison Between
Precision of Time Series Models and Machine Learning Methods,”
pp. 1–9, 2017.

[5] G. Mahalakshmi, S. Sridevi, and S. Rajaram, “A survey on
forecasting of time series data,” in 2016 International Conference on
Computing Technologies and Intelligent Data Engineering,
ICCTIDE 2016, 2016, pp. 1–8.

[6] L. A. Laboissiere, R. A. S. Fernandes, and G. G. Lage, “Maximum
and minimum stock price forecasting of Brazilian power distribution
companies based on artificial neural networks,” Appl. Soft Comput.,
vol. 35, pp. 66–74, 2015.

[7] S. Bouktif et al., “Optimal Deep Learning LSTM Model for Electric
Load Forecasting using Feature Selection and Genetic Algorithm:
Comparison with Machine Learning Approaches,” Energies, vol. 11,
no. 7, p. 1636, Jun. 2018.

[8] Y. Al-Douri, H. Hamodi, and J. Lundberg, “Time Series Forecasting
Using a Two-Level Multi-Objective Genetic Algorithm: A Case
Study of Maintenance Cost Data for Tunnel Fans,” Algorithms, vol.
11, no. 8, p. 123, Aug. 2018.

[9] V. Manahov and H. Zhang, “Forecasting Financial Markets Using
High-Frequency Trading Data: Examination with Strongly Typed
Genetic Programming,” Int. J. Electron. Commer., vol. 23, no. 1, pp.
12–32, Jan. 2019.

[10] J. Timmis, A. Hone, T. Stibor, and E. Clark, “Theoretical advances in
artificial immune systems,” Theor. Comput. Sci., vol. 403, no. 1, pp.
11–32, Aug. 2008.

[11] D. Dasgupta, S. Yu, and F. Nino, “Recent advances in artificial
immune systems: Models and applications,” Appl. Soft Comput. J.,
vol. 11, no. 2, pp. 1574–1587, Mar. 2011.

[12] R. Syahputra and I. Soesanti, “An artificial immune system algorithm
approach for reconfiguring distribution network,” in AIP Conference
Proceedings, 2017, vol. 1867, p. 20019.

[13] G. Cheng, “Unattended remote attestation delegation for grid
computing,” 2009.

[14] H. S. Bernardino and H. J. C. Barbosa, “Artificial Immune Systems
for Optimization,” Springer, Berlin, Heidelberg, 2009, pp. 389–411.

[15] C. Liang and L. Peng, “An Automated Diagnosis System of Liver
Disease using Artificial Immune and Genetic Algorithms,” J. Med.
Syst., vol. 37, no. 2, p. 9932, Apr. 2013.

[16] J. Timmis, “Artificial immune systems—today and tomorrow,” Nat.
Comput., vol. 6, no. 1, pp. 1–18, Feb. 2007.

[17] Y. Peng and B.-L. Lu, “Hybrid learning clonal selection algorithm,”
Inf. Sci. (Ny)., vol. 296, pp. 128–146, Mar. 2015.

[18] W. Pang, K. Wang, Y. Wang, G. Ou, H. Li, and L. Huang, “Clonal
Selection Algorithm for Solving Permutation Optimisation Problems:
A Case Study of Travelling Salesman Problem,” in Proceedings of
the International Conference on Logistics, Engineering, Management
and Computer Science, 2015.

[19] N. Xu, Y. Ding, L. Ren, and K. Hao, “Degeneration Recognizing
Clonal Selection Algorithm for Multimodal Optimization,” IEEE
Trans. Cybern., vol. 48, no. 3, pp. 848–861, Mar. 2018.

[20] W. Luo and X. Lin, “Recent advances in clonal selection algorithms
and applications,” in 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), 2017, pp. 1–8.

[21] Y.-C. Chou, Y.-H. Fan, M. Nakajima, and Y.-L. Liao, “Constrained
design optimization of active magnetic bearings through an artificial
immune system,” Eng. Comput., vol. 33, no. 8, pp. 2395–2420, Nov.
2016.

[22] G. Pan, K. Li, A. Ouyang, and K. Li, “Hybrid immune algorithm
based on greedy algorithm and delete-cross operator for solving
TSP,” Soft Comput., vol. 20, no. 2, pp. 555–566, Feb. 2016.

[23] Z. Li, X. Yan, Y. Fan, and K. Tang, “Improved Clonal Selection
Algorithm for Solving AVO Elastic Parameter Inversion Problem,”
in Qiao J. et al. (eds) Bio-inspired Computing: Theories and
Applications. BIC-TA 2018. Communications in Computer and
Information Science, Springer, Singapore, 2018, pp. 60–69.

[24] Y. Hu, X. Sun, X. Nie, Y. Li, and L. Liu, “An Enhanced LSTM for
Trend Following of Time Series,” IEEE Access, pp. 1–1, 2019.

[25] L. N. de Castro and F. J. Von Zuben, “Learning and optimization
using the clonal selection principle,” IEEE Trans. Evol. Comput., vol.
6, no. 3, pp. 239–251, Jun. 2002.

[26] E. Hadavandi, A. Ghanbari, and S. Abbasian-Naghneh, “Developing
a Time Series Model Based on Particle Swarm Optimization for Gold
Price Forecasting,” in 2010 Third International Conference on
Business Intelligence and Financial Engineering, 2010, pp. 337–340.

156

