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Abstract— We are addressing the course timetabling problem in this work. In a university, students can select their favorite courses 
each semester. Thus, the general requirement is to allow them to attend lectures without clashing with other lectures. A feasible 
solution is a solution where this and other conditions are satisfied. Constructing reasonable solutions for course timetabling problem 
is a hard task. Most of the existing methods failed to generate reasonable solutions for all cases. This is since the problem is heavily 
constrained and an effective method is required to explore and exploit the search space. We utilize Monte Carlo Tree Search (MCTS) 
in finding feasible solutions for the first time. In MCTS, we build a tree incrementally in an asymmetric manner by sampling the 
decision space. It is traversed in the best-first manner. We propose several enhancements to MCTS like simulation and tree pruning 
based on a heuristic. The performance of MCTS is compared with the methods based on graph coloring heuristics and Tabu search. 
We test the solution methodologies on the three most studied publicly available datasets. Overall, MCTS performs better than the 
method based on graph coloring heuristic; however, it is inferior compared to the Tabu based method. Experimental results are 
discussed. 
 
Keywords— combinatorial optimization; timetabling; monte carlo tree search; graph coloring heuristics; tabu search. 
 
 

I. INTRODUCTION 

Course timetabling problem (CTP) involves allocating 
courses to time slots and rooms to produce a satisfactory 
timetable satisfying several constraints. CTP is a variant of 
the combinatorial optimization problem (COP). It is a widely 
studied NP-complete problem due to its practical importance 
to universities. A feasible course timetable prevents clashes 
of courses allowing students to attend all the lectures for 
courses registered. As a result, lecturers are not required to 
conduct replacement classes for the clashing courses. A 
feasible timetable ensures that lecture rooms fulfill the 
requirements of courses by having enough seats and teaching 
equipment such as overhead projector, audio/video, Internet 
connection etc. By having a feasible timetable, it is possible 
to conduct courses (possibly related) in a specific sequence. 
For instance, some courses may require that lectures be 
conducted before tutorials or vice-versa. Finally, a feasible 

course timetable allows busy lecturers to perform courses at 
certain preferred times. 

MCTS is considered as a comparatively new search 
methodology. It has caught the attention of the Artificial 
Intelligence (AI) community because of its success in the 
games area. The impact of MCTS in the territory of the 
game has inspired us to figure out the performance of MCTS 
in CTP which are dominated by local search methods. We 
apply MCTS in finding feasible solutions (solutions that 
fulfill all the hard constraints) for the first time. We propose 
several enhancements to MCTS, such as simulation and tree 
pruning based on a heuristic. The performance of MCTS is 
compared with that of the classical graph coloring approach 
as well as Tabu Search. 

A. Problem Description 

We are utilizing publicly available datasets (standard 
benchmarks) in this research. The datasets are Socha 
consists of 11 cases, ITC02 consists of 20 cases, and ITC07 
consists of 24 cases. All the datasets have hard constraints, 
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namely, student can only attend one course at one time, a 
room must fulfill the features required by a course, a room 
must provide enough seats for a course, and only one course 
is allowed in every time slot and room. ITC07 has two extra 
hard constraints consist of a course that must be assigned to 
one of the preset time slots and a course may be required to 
appear in a certain sequence.  

B. Related Work 

MCTS based programs are now comparable with the best  
human players [1], [2], [3]. MCTS is well known in games 
AI but it is seldom used for COP. Examples of the 
application of MCTS in COP are job shop scheduling [4], 
one player puzzle [5], reentrant scheduling problem [6] and 
production management problems [7]. To our knowledge, 
MCTS has never been utilized on CTP. 

Various approaches have been developed in finding 
feasible solutions for CTP. One common approach is 
utilizing graph coloring heuristics. A hybrid of graph 
coloring heuristics was employed to construct an early 
solution by Sabar et al. where events were randomly 
assigned to time slots and rooms after sorting them by 
heuristics such as largest degree, largest enrolment and 
saturation degree [8]. Interested readers may refer to [9] and 
[10]. 

Another common approach is based on Tabu search. To 
find a feasible solution, Cambazard et al. performed a local 
search on randomly generated solutions [11]. In order to 
avoid an event from being repeatedly allocated the identical 
time slots, a Tabu list is maintained for certain number of 
iterations. They used neighborhood structures such as 
transferring a course to a vacant place, exchanging two 
courses, exchanging two-time slots, matching (courses are 
unassigned and reassigned within a time slot), transferring a 
course using matching and Hungarian move. Other examples 
of this approach can be found in [12] and [13]. Some authors 
are using methods based on the combination of graph 
coloring heuristics and Tabu search in finding feasible 
solutions. 100% feasibility is attained for all the cases of 
ITC07 by Lewis and Thompson using constructive heuristics 
and then PARTIALCOL algorithm [14]. Unassigned events 
were handled using a Tabu mechanism [15]. Refer to [16] 
and [17] for other similar methods. 

II. MATERIALS AND METHOD 

A. MCTS 

In MCTS, every state is constituted by a node in the tree 
and a directed link constitutes every action (leading to the 
state). Every node contains a value and a visit count. MCTS 
comprises four key steps specifically selection, expansion, 
simulation and back-propagation. These steps are repeated 
within available computation resources. Inside the selection 
step, the tree is covered from the root until a non-terminal 
node (with unvisited action) arrives. Inside the expansion 
step, a new child node is appended for the unvisited action. 
Inside the simulation step, a playout is carried out from the 
child node to generate an outcome. Inside the 
backpropagation step, the covered nodes (plus the child node) 
are updated with values from the outcome. Finally, the best 
child (child node having the greatest average value or visit 

count) of the root node is the selected move. The process is 
depicted in Fig. 1, from [18]. 

 

 
Fig. 1  MCTS 

 
In our MCTS implementation, we assign events into time 

slots and use maximal matching for room assignment. The 
node and action classes are defined as shown in Fig. 2. 
Algorithm 1 shows the MCTS method. We set the initial 
solution initSol to best solution bestSol, list of events E to 
unassigned events uassigned and best cost f(bestSol) to the 
number of events in E. We make a node as the root node 
rootNode. The iteration stops when the 
terminationCondition is true (when either we found a 
feasible solution or the elapsed time passes execution time t). 
At the start of every iteration, we set the current solution 
curSol to initSol, the list of remaining events remaining to 
events in E and the list of visited nodes visitedNode to 
vacant. We append the root node to visitedNode. Nodes 
visited during tree traversal are kept in the visitedNode. 

 

 
Fig. 2 Node and Action class definition 

 
Algorithm 1 
1: method MCTS (bestSol, unassigned) 
2:    initSol ← bestSol 
3:  E ← unassigned 
4:    f (bestSol) ← |E| 
5:    make a node, rootNode 
6:    while terminationCondition = false 
7:   curSol ← initSol 
8:   remaining ← E 
9:         visitedNode ← vacant 
10:       visitedNode ← visitedNode ∪ rootNode 
11:       TREEGROWTH (curSol, rootNode, visitedNode, 
remaining) 
12:       reward   ← SIMULATION (curSol,  bestSol,    
   f(bestSol), unassigned, remaining, E) 
13:       BACKPROPAGATION (reward, visitedNode) 
14:    end while 
15: end method 
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TREEGROWTH method is given in Algorithm 2. We set 
the currentNode to rootNode. While currentNode is not a 
leaf node, we select one of the children of currentNode as 
the current node by using the SELECTION method in 
Algorithm 7. We then append the current node to 
visitedNode. The event of currentNode is assigned to curSol 
according to the time slot of currentNode. We then remove 
that event from remaining. We try to expand the tree from 
the leaf node if the currentNode is leaf node. All the possible 
actions are selected and stored in the list of actions A by the 
GETACTIONS method (Algorithm 8). If A is not vacant, we 
append all actions in A as the children of currentNode using 
the EXPANSION method (Algorithm 11). We randomly 
choose one of the children as the child node childNode and 
append it to visitedNode. The event of childNode is assigned 
to curSol according to the time slot of childNode. We then 
remove that event from remaining. 
 
Algorithm 2  
1: method TREEGROWTH (curSol, rootNode, visitedNode, 
remaining) 
2:    currentNode ← rootNode 
3:   while currentNode is not leaf  
4:     currentNode ← SELECTION (currentNode) 
5:      visitedNode ← visitedNode ∪ currentNode 
6:           curSol ← curSol ∪ currentNode.event 
7:           remaining ← remaining − currentNode.event 
8:    end while 
9:    A ←GETACTIONS (remaining, curSol) 
10:   if A is not vacant  
11:   EXPANSION (currentNode, A) 
12:     childNode ← select one of currentNode.children   
   randomly 
13:     visitedNode ← visitedNode ∪ childNode  
14:     curSol ← curSol ∪ childNode.event  
15:     remaining ← remaining − childNode.event 
16:  end if 
17: end method 
 

SIMULATION method is presented in Algorithm 3. We 
assign events to time slots in curSol. An event in remaining 
is returned according to heuristics by SELECTEVENT. 
SELECTTIMESLOT returns a time slot that is suitable for 
event. Dynamic Search Rearrangement (DSR) is used for 
event and time slot selection as it is the most effective 
heuristic based on experience. unplaced is a list of unplaced 
events that keeps events without any compatible time slot. 
We calculate f(curSol) as the number of events in unplaced. 
bestSol, f(bestSol) and unassigned are updated if f(curSol) is 
superior than f(bestSol). As reward is specified as the ratio of 
assigned events to the number of events, reward in the range 
of 0 to 1 is returned. 

 
Algorithm 3  
1: method SIMULATION (curSol, bestSol, f(bestSol), 
unassigned, remaining, E) 
2:  unplaced ← vacant 
3:          size ← |remaining| 
4:  for i = 1 to size  
5:   event ← SELECTEVENT (remaining, curSol) 
6:   timeSlot ← SELECTTIMESLOT (event, remaining, 
curSol) 
7:   if timeSlot is not null 
8:    curSol ← curSol ∪ event //assign event to timeSlot 

9:   else 
10:    unplaced ← unplaced ∪ event 
11:   end if 
12:   remaining ← remaining − event 
13:  end for 
14:  f (curSol) ← |unplaced| 
15:  if f (curSol) < f (bestSol) 
16:   bestSol ← curSol 
17:   f (bestSol) ← f (curSol) 
18:   unassigned ← unplaced 
19:  end if 
20:  return ( |E|−|unplaced|) / |E| 
21: end method 
 

BACKPROPAGATION method is shown in Algorithm 4. 
We update the visit and value attribute of every node in 
visitedNode. We increment the visit count and update the 
value as a cumulative mean of reward. 

 
Algorithm 4  
1: method BACKPROPAGATION (reward, visitedNode) 
2:  for all node in visitedNode  
3:   node.updateVisit() 
4:   node.updateValue(reward) 
5:  end for 
6: end method 
 

We describe the SELECTION, GETACTIONS and 
EXPANSION methods stated earlier in detail below. In 
SELECTION method (Algorithm 5), we return a child with 
the highest UCB value among the children of currentNode. 
We balance the search exploration and exploitation by 
adjusting the constant B. More priority is given to the less 
frequently visited nodes when B is set higher. We set B as 
0.0001. 

 
Algorithm 5  
1: method SELECTION (currentNode) 
2:  return arg maxi∈children of currentNode valuei +  

  B  
3: end method 
 

GETACTIONS method is given Algorithm 6. To avoid 
the tree from getting too wide, we apply several heuristics 
used in graph coloring to filtrate the actions. Effectively, we 
prune the tree based on heuristics. Bear in mind that an 
action comprises of an event and a time slot. Events in 
remaining are returned based on heuristics by GETEVENTS. 
GETTIMESLOTS returns time slots that are suitable for e. 
 
Algorithm 6  
1: method GETACTIONS (remaining, curSol) 
2:  A ← vacant 
3:  E ← GETEVENTS (remaining, curSol) 
4:  for all e in E  
5:   TS ← GETTIMESLOTS (e, remaining, curSol) 
6:   for all ts in TS  
7:    A ← A ∪ action (e, ts) 
8:   end for 
9:  end for 
10:  return A  
11: end method 
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EXPANSION method is shown in Algorithm 7. We 
append all actions in A as children of currentNode. Unlike 
the general implementation of MCTS (where a child node is 
appended whenever an unvisited action is encountered), we 
append multiple nodes at one time. Our intention is to save 
computation cost with the sacrifice of some memory. 

 
Algorithm 7  
1:  method EXPANSION (currentNode, A) 
2:  append all actions in A as children of currentNode 
3:  end method 

B. Benchmark: Graph Colouring Heuristic (GCH) 

In the graph coloring problem, GCH is considered a 
classical approach. The heuristics derived from graph 
coloring problem are often utilized in CTP. Usually, difficult 
events are assigned first with the hope that easier events will 
be assigned later as the environment getting more restricted. 
Algorithm 8 presents the GCH method. At every iteration, 
an event is selected and assigned to a selected time slot. It is 
a one-pass method. In our experiments, Dynamic  Search  
Rearrangement  (DSR) [19] is utilized. DSR is a heuristic 
often used in constraint satisfaction problem. It is dynamic 
as the next selected event is determined at every iteration. In 
DSR, we select an event randomly from the set E={events 
with the least number of suitable time slots}. Next, we select 
a timeSlot randomly from the set P={time slots suitable for 
event and fit the least number of left events}. 
 
Algorithm 8  
1: method GCH (bestSol, unasssigned) 
2:  remaining ← unassigned 
3:         unplaced ← vacant 
4:  size ← |remaining| 
5:  for i = 1 to size  
6:   event ← SELECTEVENT (remaining)  
7:   timeSlot ← SELECTTIMESLOT (event) 
8:   if timeSlot is not null  
9:    bestSol ← bestSol ∪ event //assign event to timeSlot 
10:   else 
11:    unplaced ← unplaced ∪ event 
12:   end if 
13:   remaining = remaining − event 
14:          end for 
15:     unassigned ← unplaced 
16:  end method 

C. Benchmark: Tabu Search (TS) 

PARTIALCOL [14] was originally utilized in addressing 
graph coloring problems. [16], [20] and [15] adapted the 
algorithm in solving CTP. The TS method we tested here is 
based on PARTIALCOL. A neighbor move is a move of one 
event from unplaced to a time slot in curSol. At every 
iteration, we evaluate all the neighborhood moves by taking 
into consideration all suitable non-Tabu time slots for entire 
events in unplaced. All events conflicting with e (precedence 
or clash constraint) are temporarily shifted from curSol to 
unplaced in order to move an event e into a time slot feasibly. 
Maximal matching is used for room assignment sparingly as 
it is computationally expensive. A room is selected 
randomly among the suitable rooms and the relevant event is 
shifted from curSol to unplaced in case matching could not 
find a room for the specific event. We assess solutions 

(curSol, canSol, bestSol) utilizing the cost function f based 
on the number of unplaced events as given in Equation 1: 
 

 
(1) 

 
We record the neighbor move with the lowest candidate 

cost f(canSol) as bestEvent and bestSlot. We move the events 
conflicting with bestEvent from curSol to unplaced. We 
applied the best neighbor move by moving the bestEvent 
from unplaced to the bestSlot of curSlot. If f(curSlot) is 
superior than f(bestSol), bestSol, f(bestSol) and unassigned 
are updated. We prevent the events conflicting with  
bestEvent from returning to their original time slots for some 
iterations by utilizing the Tabu tenure in Equation 2: 

 
 RANDOM [10) +|unplaced| (2) 
 
where |unplaced| is the number of unplaced events. We use 
the value 10 for the random element as the same value was 
used in [14], [15] and [20] and more importantly, it works 
well for all the datasets that we are working on. The value of 
Tabu tenure determines the level of search exploration. Most 
of the available moves are not reachable thus restricting the 
search when the value of Tabu tenure is set too high. 
Meanwhile, cycling tends to occur which may stall the 
search when the value is set too low. The iteration stops 
when a feasible solution is found (unplaced is vacant) or the 
elapsed time passes execution time t. 

III. RESULTS AND DISCUSSION 

We conducted the experiments on Intel Xeon (3.1GHz) 
with 4Gb RAM machines. We coded the algorithms utilizing 
Java language. The computation time limit (which is set by 
executing a benchmark program) for every execution is 
T=190 seconds. 

A. Random Simulation vs. Heuristic Based Simulation 

Domain knowledge is incorporated into playouts in order 
to make the simulation in MCTS more realistic [21], [22]. 
Here, the results of random simulation (random selection of 
events and time slots) and heuristic-based simulation (DSR) 
are compared. We attained 100% feasibility for Socha and 
ITC02 cases (as shown in Table I and II) when a heuristic is 
applied in the simulation phase of MCTS. As shown in 
Table III, MCTS with heuristic-based simulation is more 
effective than the one with random simulation for all the 
ITC07 cases. The algorithm encountered insufficient heap 
memory issue in the tree growth phase of MCTS, therefore 
no result is available as indicated by the dash symbols in 
Table II and III. In fact, we have extended the default heap 
memory size from 256Mb to 1.5Gb. However, the alloted 
1.5Gb heap memory was worn out during the executions. An 
error message was prompted indicating this issue. Note that 
the tree is expanded by using all the possible actions (every 
action involves assigning an event to a time slot). Obviously, 
the results of random simulation are improved by heuristic 
based simulation for all the datasets considered. 
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TABLE I 
HEURISTIC BASED VS RANDOM SIMULATION ON SOCHA CASES. SHOWN 

IS (MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS. 

Case 
Simulation 

DSR Random 
Small01 (0.00, 0) (0.00, 0) 
Small02 (0.00, 0) (0.00, 0) 
Small03 (0.00, 0) (0.00, 0) 
Small04 (0.00, 0) (0.00, 0) 
Small05 (0.00, 0) (0.00, 0) 
Medium01 (0.00, 0) (4.42, 3) 
Medium02 (0.00, 0) (6.06, 5) 
Medium03 (0.00, 0) (10.71, 8) 
Medium04 (0.00, 0) (3.71, 2) 
Medium05 (0.00, 0) (13.10, 10) 
Large (0.00, 0) (35.94, 34) 
Avg. (0.00, -) (6.72, -) 

TABLE II 
HEURISTIC BASED VS RANDOM SIMULATION ON ITC02 CASES. SHOWN IS 

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS. 

Case 
Simulation 

DSR Random 
01 (0.00, 0) (14.52, 12) 

02 (0.00, 0) (10.74, 9) 

03 (0.00, 0) (11.48, 10) 

04 (0.00, 0) (20.16, 18) 

05 (0.00, 0) - 

06 (0.00, 0) - 

07 (0.00, 0) (10.68, 9) 

08 (0.00, 0) (12.71, 10) 

09 (0.00, 0) (10.35, 6) 

10 (0.00, 0) (17.13, 14) 

11 (0.00, 0) (15.29, 13) 

12 (0.00, 0) (19.26, 17) 

13 (0.00, 0) (15.26, 13) 

14 (0.00, 0) (16.06, 15) 

15 (0.00, 0) (14.52, 13) 

16 (0.00, 0) (5.68, 2) 

17 (0.00, 0) - 

18 (0.00, 0) (10.00, 7) 

19 (0.00, 0) (13.90, 12) 

20 (0.00, 0) (6.35, 5) 

Avg. (0.00, -) (13.18, -) 

TABLE III 
HEURISTIC BASED VS RANDOM SIMULATION ON ITC07 CASES. SHOWN IS 

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS. 

Case 
Simulation 

DSR Random 
01 (15.90, 14) (73.39, 67) 
02 (25.19, 20) - 
03 (0.00, 0) - 
04 - - 
05 - - 
06 (5.55, 2) - 
07 - - 
08 (0.00, 0) - 
09 (24.77, 22) (78.97, 76) 
10 (32.58, 29) (89.58, 86) 
11 (0.00, 0) - 
12 - - 
13 (9.39, 7) - 
14 - - 
15 (0.00, 0) - 

16 (0.00, 0) - 
17 (0.00, 0) - 
18 - - 
19 - - 
20 (0.00, 0) (36.58, 34) 
21 (3.35, 2) (67.23, 65) 
22 (54.58, 52) (131.39, 127) 
23 - - 
24 - - 
Avg. (11.42, -) (79.52, -) 

B. Heuristic Based Tree Pruning 

We attempt to prune the tree in MCTS to address the 
memory issue faced earlier. We expand the tree by using a 
certain number of actions (an action involves assigning an 
event to a time slot) instead of all actions at one time (as in 
the previous section). Several heuristic-based pruning 
mechanisms is compared in this section. The idea is inspired 
by the work in [23], [24], [25] where the authors utilized 
domain knowledge for pruning. We present the descriptions 
of the heuristics based on Algorithm 8 in Table IV. Note that 
simulation based on DSR is used here due to its 
effectiveness, as shown in the previous section. 

TABLE IV 
TREE PRUNING HEURISTICS. 

Heuristics Description 

DSR 

All events having the least number of suitable time slots, 
E={e1,e2,...em} is returned by GETEVENTS method. 
All-time slots suitable for em and fit the least number of 
remaining events, S={s1,s2,...sn} are returned by 
GETTIMESLOTS method. 

LD-All 

All events having the most number of clashes with other 
events, E={e1,e2,...em} is returned by GETEVENTS method. 
All time slots suitable for em, S={s1,s2,...sn} are returned by 
GETTIMESLOTS method. 

MV-All 

All events having the least number of suitable time slots, 
E={e1,e2,...em} is returned by GETEVENTS method. 
All time slots suitable for em, S={s1,s2,...sn} are returned by 
GETTIMESLOTS method. 

SD-All 

All events having the most number of clashes with other 
events, E2={e1,e2,...em} where E2 ⊂ E1 and E1={events with 
the least number of suitable time slots} is returned by 
GETEVENTS method. 
All time slots suitable for em, S={s1,s2,...sn} are returned by 
GETTIMESLOTS method. 

 
As shown in Table V and VI, 100% feasibility is attained 

for Socha and ITC02 cases regardless of heuristics applied 
for tree pruning. The same result is achieved even without 
pruning showing that these datasets are not challenging. 

TABLE V 
COMPARING TREE PRUNING HEURISTICS ON SOCHA CASES. SHOWN IS 

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS. 

 
Case 

Tree Pruning Heuristics 
MV-All LD-All SD-All DSR 

Small01 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Small02 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Small03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Small04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Small05 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Medium01 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Medium02 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Medium03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Medium04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Medium05 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
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Large (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Avg. (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 

 
TABLE VI 

COMPARING TREE PRUNING HEURISTICS ON ITC02 CASES. SHOWN IS 

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS. 

Case 
Tree Pruning Heuristics 

MV-All LD-All SD-All DSR 
01 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
02 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
05 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
06 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
07 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
08 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
09 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
10 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
11 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
12 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
13 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
14 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
15 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
16 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
17 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
18 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
19 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
20 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
Avg. (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 

 
Memory issues are no longer faced when tree pruning is 

used in ITC07 cases. The maximum heap memory 
commitment during 31 executions for every problematic 
case in the previous section is presented in Table VII. Now, 
the maximum heap memory commitment is way below 
1.5Gb (the allotted size). Note that we measured the heap 
memory sizes utilizing a tool supplied by Java Development 
Kit (JDK) called as Java Monitoring and Management 
Console.  

TABLE VII 
THE MAXIMUM MEMORY (MB) COMMITTED DURING 31 EXECUTIONS 

FOR SELECTED ITC07 CASES. 

Case Maximum Heap Memory Commitment (Gb) 
04 0.0272 
05 0.1306 
07 0.0241 
12 0.0564 
14 0.1471 
18 0.0278 
19 0.1587 
23 0.1781 
24 0.1343 

 
Among the pruning heuristic tested, MV-All is the most 

promising one as feasible solutions were found for all cases 
exclude cases 1, 2, 9, 10 and 22 as evident in  Table  VIII.  
Excitingly,  these results are compatible with those of a  
constraint programming approach [11] which also could not 
construct a feasible solutions for cases 1, 2, 9 and 10. The 
author did not consider case 22 in his experiment which is 
possibly hidden by the competition organizer at that point in 
time. From observation, we get better results when pruning 
is applied using any heuristic. With pruning, the tree size is 
considerably reduced. In effect, pruning eliminates poor 

choices and guides the search to concentrate more time on 
finer options.  

TABLE VIII 
COMPARING TREE PRUNING HEURISTICS ON ITC07 CASES. SHOWN IS 

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS. 

Case 
Tree Pruning Heuristics 

MV-All LD-All SD-All DSR 
01 (6.39, 3) (7.13, 3) (6.87, 3) (6.94, 3) 
02 (11.19, 6) (16.77, 11) (12.13, 9) (12.77, 7) 
03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
05 (0.03, 0) (0.23, 0) (0.16, 0) (1.84, 0) 
06 (0.29, 0) (0.61, 0) (0.42, 0) (0.90, 0) 
07 (0.00, 0) (0.00, 0) (0.03, 0) (0.13, 0) 
08 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
09 (16.97, 14) (17.61, 13) (15.16. 9) (14.39, 10) 
10 (19.71, 15) (24.48, 17) (21.77, 16) (18.74, 14) 
11 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
12 (0.00, 0) (0.00, 0) (0.06, 0) (1.35, 0) 
13 (1.13, 0) (2.29, 1) (1.26, 0) (2.58, 0) 
14 (0.84, 0) (1.55, 0) (2.19, 0) (3.29, 1) 
15 (0.00, 0) (0.06, 0) (0.00, 0) (0.10, 0) 
16 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
17 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
18 (0.00, 0) (0.00, 0) (0.00, 0) (0.68, 0) 
19 (2.77, 0) (3.16, 1) (8.26, 4) (10.61, 6) 
20 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0) 
21 (1.10, 0) (1.03, 0) (0.39, 0) (0.74, 0) 
22 (44.68, 41) (49.06, 46) (40.45, 31) (34.87, 28) 
23 (6.16, 0) (13.97, 7) (9.23, 2) (8.77, 2) 
24 (0.06, 0) (0.35, 0) (1.61, 0) (4.42, 1) 
Avg. (4.64, -) (5.76, -) (5.00, -) (5.13, -) 

C. Comparing MCTS with GCH and TS 

The attainment of MCTS, GCH, and TS in finding 
feasible solutions is compared in this section. The GCH 
considered here is based on the DSR heuristic. While for the 
MCTS, MV-All and DSR heuristics are utilized for the tree 
pruning and simulation phase respectively. As shown in 
Table IX, all three methods found feasible solutions for all 
Socha cases. Both MCTS and TS attained 100% feasibility.  

TABLE IX 
COMPARING MCTS, GCH, AND TS ON SOCHA CASES. SHOWN IS 

(FEASIBILITY %, MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 

EXECUTIONS. 

Case MCTS GCH TS 
Small01 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
Small02 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
Small03 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
Small04 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
Small05 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
Medium01 (100, 0.00, 0) (6, 5.00, 0) (100, 0.00, 0) 
Medium02 (100, 0.00, 0) (29, 2.55, 0) (100, 0.00, 0) 
Medium03 (100, 0.00, 0) (74, 0.48, 0) (100, 0.00, 0) 
Medium04 (100, 0.00, 0) (10, 3.52, 0) (100, 0.00, 0) 
Medium05 (100, 0.00, 0) (71, 0.68, 0) (100, 0.00, 0) 
Large (100, 0.00, 0) (3, 6.48, 0) (100, 0.00, 0) 

 
As shown in Table X, feasible solutions are found by all 

the three methods for all the ITC02 cases. However, only 
MCTS can attain 100% feasibility for all the circumstances. 
TS obtains 100% feasibility for the entire cases excluding 
claim 7 (87%). 
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TABLE X 
COMPARING MCTS, GCH, AND TS ON ITC02 CASES. SHOWN IS 

(FEASIBILITY %, MEAN UNASSIGNED, BEST UNASSIGNED,) FOR N=31 

EXECUTIONS. 

Case MCTS GCH TS 
01 (100, 0.00, 0) (84, 0.23, 0) (100, 0.00, 0) 
02 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
03 (100, 0.00, 0) (81, 0.39, 0) (100, 0.00, 0) 
04 (100, 0.00, 0) (10, 7.26, 0) (100, 0.00, 0) 
05 (100, 0.00, 0) (97, 0.03, 0) (100, 0.00, 0) 
06 (100, 0.00, 0) (74, 0.74, 0) (100, 0.00, 0) 
07 (100, 0.00, 0) (100, 0.00, 0) (87, 0.13, 0) 
08 (100, 0.00, 0) (90, 0.29, 0) (100, 0.00, 0) 
09 (100, 0.00, 0) (81, 0.42, 0) (100, 0.00, 0) 
10 (100, 0.00, 0) (42, 1.16, 0) (100, 0.00, 0) 
11 (100, 0.00, 0) (10, 4.68, 0) (100, 0.00, 0) 
12 (100, 0.00, 0) (87, 0.19, 0) (100, 0.00, 0) 
13 (100, 0.00, 0) (60, 0.77, 0) (100, 0.00, 0) 
14 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
15 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 
16 (100, 0.00, 0) (32, 2.48, 0) (100, 0.00, 0) 
17 (100, 0.00, 0) (71, 0.65, 0) (100, 0.00, 0) 
18 (100, 0.00, 0) (97, 0.03, 0) (100, 0.00, 0) 
19 (100, 0.00, 0) (65, 0.94, 0) (100, 0.00, 0) 
20 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0) 

 
Table XI presents the result comparison of the three 

methods applied to ITC07 cases. TS is the only methodology 
that can find feasible solutions for the entire cases. GCH 
obtained feasible solutions for 5 (cases 3, 8, 16, 17 and 20) 
out of the 24 cases. Meantime, MCTS obtained feasible 
solutions for all the cases exclude cases 1, 2, 9, 10 and 22. In 
truth, none of the methods could accomplish 100% 
feasibility for all the cases. TS performed competently with 
100% feasibility for all the cases excluding cases 11, 19 and 
23. 

TABLE XI 
COMPARING MCTS, GCH, AND TS ON ITC07 CASES. SHOWN IS 

(FEASIBILITY %, MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 

EXECUTIONS. 

Case MCTS GCH TS 
01 (0, 6.39, 3) (0, 34.29, 26) (100, 0.00, 0) 
02 (0, 11.19, 6) (0, 45.03, 36) (100, 0.00, 0) 
03 (100, 0.00, 0) (10, 4.35, 0) (100, 0.00, 0) 
04 (100, 0.00, 0) (0, 9.94, 4) (100, 0.00, 0) 
05 (97, 0.03, 0) (0, 20.42, 13) (100, 0.00, 0) 
06 (72, 0.29, 0) (0, 20.26, 11) (100, 0.00, 0) 
07 (100, 0.00, 0) (0, 11.87, 6) (100, 0.00, 0) 
08 (100, 0.00, 0) (3, 4.97, 0) (100, 0.00, 0) 
09 (0, 16.97, 14) (0, 43.26, 32) (100, 0.00, 0) 
10 (0, 19.71, 15) (0, 53.29, 43) (100, 0.00, 0) 
11 (100, 0.00, 0) (0, 7.10, 1) (87, 0.26, 0) 
12 (100, 0, 0.00) (0, 14.26, 4) (100, 0.00, 0) 
13 (23, 1.13, 0) (0, 25.26, 17) (100, 0.00, 0) 
14 (42, 0.84, 0) (0, 24.81, 16) (100, 0.00, 0) 
15 (100, 0.00, 0) (0, 9.97, 5) (100, 0.00, 0) 
16 (100, 0.00, 0) (10, 2.39, 0) (100, 0.00, 0) 
17 (100, 0.00, 0) (42, 1.26, 0) (100, 0.00, 0) 
18 (100, 0.00, 0) (0, 17.61, 10) (100, 0.00, 0) 
19 (6, 2.77, 0) (0, 30.23, 23) (81, 0.29, 0) 
20 (100, 0.00, 0) (13, 2.52, 0) (100, 0.00, 0) 
21 (13, 1.10, 0) (0, 14.65, 10) (100, 0.00, 0) 
22 (0, 44.68, 41) (0, 74.16, 63) (100, 0.00, 0) 
23 (3, 6.16, 0) (0, 52.81, 40) (94, 0.06, 0) 
24 (94, 0.06, 0) (0, 21.94, 13) (100, 0.00, 0) 

 

D. Expanded Execution Time for MCTS 

Out of curiosity, the execution time is expanded for 
MCTS on chosen ITC07 cases with no feasible solution can 
be found previously. Different values for B (in Algorithm 7) 
are tested. The results improve on when the execution time 
is expanded regardless of B value as evident in Table XII. 
The suitable B value for MCTS to work vigorously is subject 
to the allotted execution time t. For the shorter execution 
time, the value of 0.00001 seems to be more fitting whereas, 
for the longer execution time, 0.0001 is more suitable. 
MCTS found feasible solutions for cases 1, 2 and 9 with 
expanded execution time of 5T and B=0.0001. However, no 
feasible solution could be found for cases 10 and 22. 

TABLE XII 
COMPARING MCTS WITH EXECUTION TIME OF T AND 5T FOR CHOSEN 

ITC07 CASES. SHOWN ARE (MEAN UNASSIGNED, BEST UNASSIGNED) 
FOR  N=31 EXECUTIONS. 

Case 
B=0.0001 B=0.00001 

t=T t=5T t=T t=5T 
01  (6.39, 3)  (1.10, 0) (6.52, 3) (1.10, 0) 
02 (11.19, 6) (2.97, 0) (11.32, 7) (3.52, 0) 
09 (16.97, 14) (5.87, 0) (16.26, 8) (7.13, 2) 
10 (19.71, 15) (9.81, 5) (19.52, 16) (10.13, 6) 
22 (44.68, 41) (28.23, 19) (44.74, 39) (29.29, 21) 
Avg. (19.79, -) (9.59, -) (19.67, -) (10.23, -) 

E. Discussion 

We were faced with a heap memory issue when all 
possible actions expand the tree at one time. It was 
intentional as expanding the tree by one action at a time is 
computationally expensive. This decision is necessary as the 
CTP that we are working on, is restrained by an execution 
time limit because of competition rules. The heap memory 
issue was addressed by pruning the tree based on heuristics. 
The number of nodes appended to the tree (and therefore 
heap memory commitment) was greatly reduced by tree 
pruning. However paths to good solutions may also be cut 
off. Computational experience shows that results are affected 
by the value of B (selection part of MCTS). For longer 
execution times, a higher value of B allows MCTS to 
explore the search space. For shorter execution time, a lower 
value of B is preferred so that MCTS can exploit the search 
space. 

Unlike games like Go, MCTS did not work well for CTP. 
MCTS is lacking the flexibility provided by local search 
methodologies (e.g. TS). In every iteration of MCTS, events 
are constructively assigned. In other words, moves made 
cannot be changed. This suits perfectly for Go however not 
for timetabling as events can be unassigned and reassigned 
at any time. As a result, the search space connectivity 
offered by MCTS is lacking compared to that of a local 
search. The effort to hybridize the algorithm with local 
search is also hampered by the rigid tree structure of MCTS. 
In fact, local search is the key for a similar learning-based 
algorithms such as Ant Colony Optimization (ACO) in 
obtaining good results. The use of learning-based algorithms 
(MCTS) is restricted by the time limit imposed on the CTP. 
Usually, reasonable computational resources are required for 
this type of algorithm to perform effectively. 
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IV.  CONCLUSION 

Random and heuristic simulation (DSR) for MCTS were 
compared. Heuristic-based simulation seems to be superior 
to a random simulation. We believe simulation is made more 
practical by heuristics in comparison to random simulation. 
Several types of tree pruning heuristics such as MV-All, LD-
All, SD-All and DSR were also tested. The efficacy of 
MTCS in constructing feasible solutions is vastly improved 
by tree pruning regarding the average number of unassigned 
events. MV-All performed the best out of the heuristics as 
shown by the empirical results presented. Effectively, 
heuristic-based simulation and tree pruning improved the 
performance of the basic MCTS for the CTP. 

MCTS, GCH and TS were compared in finding feasible 
solutions. In terms of performance, MCTS was useful for 
Socha and ITC02 cases but lacking for ITC07 cases. Even 
with expanded execution time, MCTS was unable to 
construct a feasible solution for cases 10 and 22 of ITC07. 
Overall, MCTS performed superior to GCH but worse than 
TS in finding feasible solutions. MCTS requires time to 
perform competently and well suited for games like Go but 
not for the competitive and time-restricted CTP 
(competitions). Meanwhile, TS shows excellent potential in 
finding feasible solutions for the CTP. 
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