

Vol.9 (2019) No. 6

ISSN: 2088-5334

Monte Carlo Tree Search in Finding Feasible Solutions for Course
Timetabling Problem

Say Leng Goh#, Graham Kendall*, Nasser R. Sabar+
#Decision Sciences Lab, ISRG, Faculty of Computing and Informatics, Universiti Malaysia Sabah Labuan International Campus,

Labuan, 87000, Malaysia.
 E-mail: gohsayleng@yahoo.com

*School of Computer Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia.

E-mail: Graham.Kendall@nottingham.edu.my

+Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia.
E-mail: nasser.sabar@gmail.com

Abstract— We are addressing the course timetabling problem in this work. In a university, students can select their favorite courses
each semester. Thus, the general requirement is to allow them to attend lectures without clashing with other lectures. A feasible
solution is a solution where this and other conditions are satisfied. Constructing reasonable solutions for course timetabling problem
is a hard task. Most of the existing methods failed to generate reasonable solutions for all cases. This is since the problem is heavily
constrained and an effective method is required to explore and exploit the search space. We utilize Monte Carlo Tree Search (MCTS)
in finding feasible solutions for the first time. In MCTS, we build a tree incrementally in an asymmetric manner by sampling the
decision space. It is traversed in the best-first manner. We propose several enhancements to MCTS like simulation and tree pruning
based on a heuristic. The performance of MCTS is compared with the methods based on graph coloring heuristics and Tabu search.
We test the solution methodologies on the three most studied publicly available datasets. Overall, MCTS performs better than the
method based on graph coloring heuristic; however, it is inferior compared to the Tabu based method. Experimental results are
discussed.

Keywords— combinatorial optimization; timetabling; monte carlo tree search; graph coloring heuristics; tabu search.

I. INTRODUCTION

Course timetabling problem (CTP) involves allocating
courses to time slots and rooms to produce a satisfactory
timetable satisfying several constraints. CTP is a variant of
the combinatorial optimization problem (COP). It is a widely
studied NP-complete problem due to its practical importance
to universities. A feasible course timetable prevents clashes
of courses allowing students to attend all the lectures for
courses registered. As a result, lecturers are not required to
conduct replacement classes for the clashing courses. A
feasible timetable ensures that lecture rooms fulfill the
requirements of courses by having enough seats and teaching
equipment such as overhead projector, audio/video, Internet
connection etc. By having a feasible timetable, it is possible
to conduct courses (possibly related) in a specific sequence.
For instance, some courses may require that lectures be
conducted before tutorials or vice-versa. Finally, a feasible

course timetable allows busy lecturers to perform courses at
certain preferred times.

MCTS is considered as a comparatively new search
methodology. It has caught the attention of the Artificial
Intelligence (AI) community because of its success in the
games area. The impact of MCTS in the territory of the
game has inspired us to figure out the performance of MCTS
in CTP which are dominated by local search methods. We
apply MCTS in finding feasible solutions (solutions that
fulfill all the hard constraints) for the first time. We propose
several enhancements to MCTS, such as simulation and tree
pruning based on a heuristic. The performance of MCTS is
compared with that of the classical graph coloring approach
as well as Tabu Search.

A. Problem Description

We are utilizing publicly available datasets (standard
benchmarks) in this research. The datasets are Socha
consists of 11 cases, ITC02 consists of 20 cases, and ITC07
consists of 24 cases. All the datasets have hard constraints,

1936

namely, student can only attend one course at one time, a
room must fulfill the features required by a course, a room
must provide enough seats for a course, and only one course
is allowed in every time slot and room. ITC07 has two extra
hard constraints consist of a course that must be assigned to
one of the preset time slots and a course may be required to
appear in a certain sequence.

B. Related Work

MCTS based programs are now comparable with the best
human players [1], [2], [3]. MCTS is well known in games
AI but it is seldom used for COP. Examples of the
application of MCTS in COP are job shop scheduling [4],
one player puzzle [5], reentrant scheduling problem [6] and
production management problems [7]. To our knowledge,
MCTS has never been utilized on CTP.

Various approaches have been developed in finding
feasible solutions for CTP. One common approach is
utilizing graph coloring heuristics. A hybrid of graph
coloring heuristics was employed to construct an early
solution by Sabar et al. where events were randomly
assigned to time slots and rooms after sorting them by
heuristics such as largest degree, largest enrolment and
saturation degree [8]. Interested readers may refer to [9] and
[10].

Another common approach is based on Tabu search. To
find a feasible solution, Cambazard et al. performed a local
search on randomly generated solutions [11]. In order to
avoid an event from being repeatedly allocated the identical
time slots, a Tabu list is maintained for certain number of
iterations. They used neighborhood structures such as
transferring a course to a vacant place, exchanging two
courses, exchanging two-time slots, matching (courses are
unassigned and reassigned within a time slot), transferring a
course using matching and Hungarian move. Other examples
of this approach can be found in [12] and [13]. Some authors
are using methods based on the combination of graph
coloring heuristics and Tabu search in finding feasible
solutions. 100% feasibility is attained for all the cases of
ITC07 by Lewis and Thompson using constructive heuristics
and then PARTIALCOL algorithm [14]. Unassigned events
were handled using a Tabu mechanism [15]. Refer to [16]
and [17] for other similar methods.

II. MATERIALS AND METHOD

A. MCTS

In MCTS, every state is constituted by a node in the tree
and a directed link constitutes every action (leading to the
state). Every node contains a value and a visit count. MCTS
comprises four key steps specifically selection, expansion,
simulation and back-propagation. These steps are repeated
within available computation resources. Inside the selection
step, the tree is covered from the root until a non-terminal
node (with unvisited action) arrives. Inside the expansion
step, a new child node is appended for the unvisited action.
Inside the simulation step, a playout is carried out from the
child node to generate an outcome. Inside the
backpropagation step, the covered nodes (plus the child node)
are updated with values from the outcome. Finally, the best
child (child node having the greatest average value or visit

count) of the root node is the selected move. The process is
depicted in Fig. 1, from [18].

Fig. 1 MCTS

In our MCTS implementation, we assign events into time

slots and use maximal matching for room assignment. The
node and action classes are defined as shown in Fig. 2.
Algorithm 1 shows the MCTS method. We set the initial
solution initSol to best solution bestSol, list of events E to
unassigned events uassigned and best cost f(bestSol) to the
number of events in E. We make a node as the root node
rootNode. The iteration stops when the
terminationCondition is true (when either we found a
feasible solution or the elapsed time passes execution time t).
At the start of every iteration, we set the current solution
curSol to initSol, the list of remaining events remaining to
events in E and the list of visited nodes visitedNode to
vacant. We append the root node to visitedNode. Nodes
visited during tree traversal are kept in the visitedNode.

Fig. 2 Node and Action class definition

Algorithm 1
1: method MCTS (bestSol, unassigned)
2: initSol ← bestSol
3: E ← unassigned
4: f (bestSol) ← |E|
5: make a node, rootNode
6: while terminationCondition = false
7: curSol ← initSol
8: remaining ← E
9: visitedNode ← vacant
10: visitedNode ← visitedNode ∪ rootNode
11: TREEGROWTH (curSol, rootNode, visitedNode,
remaining)
12: reward ← SIMULATION (curSol, bestSol,
 f(bestSol), unassigned, remaining, E)
13: BACKPROPAGATION (reward, visitedNode)
14: end while
15: end method

1937

TREEGROWTH method is given in Algorithm 2. We set
the currentNode to rootNode. While currentNode is not a
leaf node, we select one of the children of currentNode as
the current node by using the SELECTION method in
Algorithm 7. We then append the current node to
visitedNode. The event of currentNode is assigned to curSol
according to the time slot of currentNode. We then remove
that event from remaining. We try to expand the tree from
the leaf node if the currentNode is leaf node. All the possible
actions are selected and stored in the list of actions A by the
GETACTIONS method (Algorithm 8). If A is not vacant, we
append all actions in A as the children of currentNode using
the EXPANSION method (Algorithm 11). We randomly
choose one of the children as the child node childNode and
append it to visitedNode. The event of childNode is assigned
to curSol according to the time slot of childNode. We then
remove that event from remaining.

Algorithm 2
1: method TREEGROWTH (curSol, rootNode, visitedNode,
remaining)
2: currentNode ← rootNode
3: while currentNode is not leaf
4: currentNode ← SELECTION (currentNode)
5: visitedNode ← visitedNode ∪ currentNode
6: curSol ← curSol ∪ currentNode.event
7: remaining ← remaining − currentNode.event
8: end while
9: A ←GETACTIONS (remaining, curSol)
10: if A is not vacant
11: EXPANSION (currentNode, A)
12: childNode ← select one of currentNode.children
 randomly
13: visitedNode ← visitedNode ∪ childNode
14: curSol ← curSol ∪ childNode.event
15: remaining ← remaining − childNode.event
16: end if
17: end method

SIMULATION method is presented in Algorithm 3. We
assign events to time slots in curSol. An event in remaining
is returned according to heuristics by SELECTEVENT.
SELECTTIMESLOT returns a time slot that is suitable for
event. Dynamic Search Rearrangement (DSR) is used for
event and time slot selection as it is the most effective
heuristic based on experience. unplaced is a list of unplaced
events that keeps events without any compatible time slot.
We calculate f(curSol) as the number of events in unplaced.
bestSol, f(bestSol) and unassigned are updated if f(curSol) is
superior than f(bestSol). As reward is specified as the ratio of
assigned events to the number of events, reward in the range
of 0 to 1 is returned.

Algorithm 3
1: method SIMULATION (curSol, bestSol, f(bestSol),
unassigned, remaining, E)
2: unplaced ← vacant
3: size ← |remaining|
4: for i = 1 to size
5: event ← SELECTEVENT (remaining, curSol)
6: timeSlot ← SELECTTIMESLOT (event, remaining,
curSol)
7: if timeSlot is not null
8: curSol ← curSol ∪ event //assign event to timeSlot

9: else
10: unplaced ← unplaced ∪ event
11: end if
12: remaining ← remaining − event
13: end for
14: f (curSol) ← |unplaced|
15: if f (curSol) < f (bestSol)
16: bestSol ← curSol
17: f (bestSol) ← f (curSol)
18: unassigned ← unplaced
19: end if
20: return (|E|−|unplaced|) / |E|
21: end method

BACKPROPAGATION method is shown in Algorithm 4.
We update the visit and value attribute of every node in
visitedNode. We increment the visit count and update the
value as a cumulative mean of reward.

Algorithm 4
1: method BACKPROPAGATION (reward, visitedNode)
2: for all node in visitedNode
3: node.updateVisit()
4: node.updateValue(reward)
5: end for
6: end method

We describe the SELECTION, GETACTIONS and
EXPANSION methods stated earlier in detail below. In
SELECTION method (Algorithm 5), we return a child with
the highest UCB value among the children of currentNode.
We balance the search exploration and exploitation by
adjusting the constant B. More priority is given to the less
frequently visited nodes when B is set higher. We set B as
0.0001.

Algorithm 5
1: method SELECTION (currentNode)
2: return arg maxi∈children of currentNode valuei +

 B
3: end method

GETACTIONS method is given Algorithm 6. To avoid
the tree from getting too wide, we apply several heuristics
used in graph coloring to filtrate the actions. Effectively, we
prune the tree based on heuristics. Bear in mind that an
action comprises of an event and a time slot. Events in
remaining are returned based on heuristics by GETEVENTS.
GETTIMESLOTS returns time slots that are suitable for e.

Algorithm 6
1: method GETACTIONS (remaining, curSol)
2: A ← vacant
3: E ← GETEVENTS (remaining, curSol)
4: for all e in E
5: TS ← GETTIMESLOTS (e, remaining, curSol)
6: for all ts in TS
7: A ← A ∪ action (e, ts)
8: end for
9: end for
10: return A
11: end method

1938

EXPANSION method is shown in Algorithm 7. We
append all actions in A as children of currentNode. Unlike
the general implementation of MCTS (where a child node is
appended whenever an unvisited action is encountered), we
append multiple nodes at one time. Our intention is to save
computation cost with the sacrifice of some memory.

Algorithm 7
1: method EXPANSION (currentNode, A)
2: append all actions in A as children of currentNode
3: end method

B. Benchmark: Graph Colouring Heuristic (GCH)

In the graph coloring problem, GCH is considered a
classical approach. The heuristics derived from graph
coloring problem are often utilized in CTP. Usually, difficult
events are assigned first with the hope that easier events will
be assigned later as the environment getting more restricted.
Algorithm 8 presents the GCH method. At every iteration,
an event is selected and assigned to a selected time slot. It is
a one-pass method. In our experiments, Dynamic Search
Rearrangement (DSR) [19] is utilized. DSR is a heuristic
often used in constraint satisfaction problem. It is dynamic
as the next selected event is determined at every iteration. In
DSR, we select an event randomly from the set E={events
with the least number of suitable time slots}. Next, we select
a timeSlot randomly from the set P={time slots suitable for
event and fit the least number of left events}.

Algorithm 8
1: method GCH (bestSol, unasssigned)
2: remaining ← unassigned
3: unplaced ← vacant
4: size ← |remaining|
5: for i = 1 to size
6: event ← SELECTEVENT (remaining)
7: timeSlot ← SELECTTIMESLOT (event)
8: if timeSlot is not null
9: bestSol ← bestSol ∪ event //assign event to timeSlot
10: else
11: unplaced ← unplaced ∪ event
12: end if
13: remaining = remaining − event
14: end for
15: unassigned ← unplaced
16: end method

C. Benchmark: Tabu Search (TS)

PARTIALCOL [14] was originally utilized in addressing
graph coloring problems. [16], [20] and [15] adapted the
algorithm in solving CTP. The TS method we tested here is
based on PARTIALCOL. A neighbor move is a move of one
event from unplaced to a time slot in curSol. At every
iteration, we evaluate all the neighborhood moves by taking
into consideration all suitable non-Tabu time slots for entire
events in unplaced. All events conflicting with e (precedence
or clash constraint) are temporarily shifted from curSol to
unplaced in order to move an event e into a time slot feasibly.
Maximal matching is used for room assignment sparingly as
it is computationally expensive. A room is selected
randomly among the suitable rooms and the relevant event is
shifted from curSol to unplaced in case matching could not
find a room for the specific event. We assess solutions

(curSol, canSol, bestSol) utilizing the cost function f based
on the number of unplaced events as given in Equation 1:

(1)

We record the neighbor move with the lowest candidate

cost f(canSol) as bestEvent and bestSlot. We move the events
conflicting with bestEvent from curSol to unplaced. We
applied the best neighbor move by moving the bestEvent
from unplaced to the bestSlot of curSlot. If f(curSlot) is
superior than f(bestSol), bestSol, f(bestSol) and unassigned
are updated. We prevent the events conflicting with
bestEvent from returning to their original time slots for some
iterations by utilizing the Tabu tenure in Equation 2:

 RANDOM [10) +|unplaced| (2)

where |unplaced| is the number of unplaced events. We use
the value 10 for the random element as the same value was
used in [14], [15] and [20] and more importantly, it works
well for all the datasets that we are working on. The value of
Tabu tenure determines the level of search exploration. Most
of the available moves are not reachable thus restricting the
search when the value of Tabu tenure is set too high.
Meanwhile, cycling tends to occur which may stall the
search when the value is set too low. The iteration stops
when a feasible solution is found (unplaced is vacant) or the
elapsed time passes execution time t.

III. RESULTS AND DISCUSSION

We conducted the experiments on Intel Xeon (3.1GHz)
with 4Gb RAM machines. We coded the algorithms utilizing
Java language. The computation time limit (which is set by
executing a benchmark program) for every execution is
T=190 seconds.

A. Random Simulation vs. Heuristic Based Simulation

Domain knowledge is incorporated into playouts in order
to make the simulation in MCTS more realistic [21], [22].
Here, the results of random simulation (random selection of
events and time slots) and heuristic-based simulation (DSR)
are compared. We attained 100% feasibility for Socha and
ITC02 cases (as shown in Table I and II) when a heuristic is
applied in the simulation phase of MCTS. As shown in
Table III, MCTS with heuristic-based simulation is more
effective than the one with random simulation for all the
ITC07 cases. The algorithm encountered insufficient heap
memory issue in the tree growth phase of MCTS, therefore
no result is available as indicated by the dash symbols in
Table II and III. In fact, we have extended the default heap
memory size from 256Mb to 1.5Gb. However, the alloted
1.5Gb heap memory was worn out during the executions. An
error message was prompted indicating this issue. Note that
the tree is expanded by using all the possible actions (every
action involves assigning an event to a time slot). Obviously,
the results of random simulation are improved by heuristic
based simulation for all the datasets considered.

1939

TABLE I
HEURISTIC BASED VS RANDOM SIMULATION ON SOCHA CASES. SHOWN

IS (MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS.

Case
Simulation

DSR Random
Small01 (0.00, 0) (0.00, 0)
Small02 (0.00, 0) (0.00, 0)
Small03 (0.00, 0) (0.00, 0)
Small04 (0.00, 0) (0.00, 0)
Small05 (0.00, 0) (0.00, 0)
Medium01 (0.00, 0) (4.42, 3)
Medium02 (0.00, 0) (6.06, 5)
Medium03 (0.00, 0) (10.71, 8)
Medium04 (0.00, 0) (3.71, 2)
Medium05 (0.00, 0) (13.10, 10)
Large (0.00, 0) (35.94, 34)
Avg. (0.00, -) (6.72, -)

TABLE II
HEURISTIC BASED VS RANDOM SIMULATION ON ITC02 CASES. SHOWN IS

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS.

Case
Simulation

DSR Random
01 (0.00, 0) (14.52, 12)

02 (0.00, 0) (10.74, 9)

03 (0.00, 0) (11.48, 10)

04 (0.00, 0) (20.16, 18)

05 (0.00, 0) -

06 (0.00, 0) -

07 (0.00, 0) (10.68, 9)

08 (0.00, 0) (12.71, 10)

09 (0.00, 0) (10.35, 6)

10 (0.00, 0) (17.13, 14)

11 (0.00, 0) (15.29, 13)

12 (0.00, 0) (19.26, 17)

13 (0.00, 0) (15.26, 13)

14 (0.00, 0) (16.06, 15)

15 (0.00, 0) (14.52, 13)

16 (0.00, 0) (5.68, 2)

17 (0.00, 0) -

18 (0.00, 0) (10.00, 7)

19 (0.00, 0) (13.90, 12)

20 (0.00, 0) (6.35, 5)

Avg. (0.00, -) (13.18, -)

TABLE III
HEURISTIC BASED VS RANDOM SIMULATION ON ITC07 CASES. SHOWN IS

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS.

Case
Simulation

DSR Random
01 (15.90, 14) (73.39, 67)
02 (25.19, 20) -
03 (0.00, 0) -
04 - -
05 - -
06 (5.55, 2) -
07 - -
08 (0.00, 0) -
09 (24.77, 22) (78.97, 76)
10 (32.58, 29) (89.58, 86)
11 (0.00, 0) -
12 - -
13 (9.39, 7) -
14 - -
15 (0.00, 0) -

16 (0.00, 0) -
17 (0.00, 0) -
18 - -
19 - -
20 (0.00, 0) (36.58, 34)
21 (3.35, 2) (67.23, 65)
22 (54.58, 52) (131.39, 127)
23 - -
24 - -
Avg. (11.42, -) (79.52, -)

B. Heuristic Based Tree Pruning

We attempt to prune the tree in MCTS to address the
memory issue faced earlier. We expand the tree by using a
certain number of actions (an action involves assigning an
event to a time slot) instead of all actions at one time (as in
the previous section). Several heuristic-based pruning
mechanisms is compared in this section. The idea is inspired
by the work in [23], [24], [25] where the authors utilized
domain knowledge for pruning. We present the descriptions
of the heuristics based on Algorithm 8 in Table IV. Note that
simulation based on DSR is used here due to its
effectiveness, as shown in the previous section.

TABLE IV
TREE PRUNING HEURISTICS.

Heuristics Description

DSR

All events having the least number of suitable time slots,
E={e1,e2,...em} is returned by GETEVENTS method.
All-time slots suitable for em and fit the least number of
remaining events, S={s1,s2,...sn} are returned by
GETTIMESLOTS method.

LD-All

All events having the most number of clashes with other
events, E={e1,e2,...em} is returned by GETEVENTS method.
All time slots suitable for em, S={s1,s2,...sn} are returned by
GETTIMESLOTS method.

MV-All

All events having the least number of suitable time slots,
E={e1,e2,...em} is returned by GETEVENTS method.
All time slots suitable for em, S={s1,s2,...sn} are returned by
GETTIMESLOTS method.

SD-All

All events having the most number of clashes with other
events, E2={e1,e2,...em} where E2 ⊂ E1 and E1={events with
the least number of suitable time slots} is returned by
GETEVENTS method.
All time slots suitable for em, S={s1,s2,...sn} are returned by
GETTIMESLOTS method.

As shown in Table V and VI, 100% feasibility is attained

for Socha and ITC02 cases regardless of heuristics applied
for tree pruning. The same result is achieved even without
pruning showing that these datasets are not challenging.

TABLE V
COMPARING TREE PRUNING HEURISTICS ON SOCHA CASES. SHOWN IS

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS.

Case

Tree Pruning Heuristics
MV-All LD-All SD-All DSR

Small01 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Small02 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Small03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Small04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Small05 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Medium01 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Medium02 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Medium03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Medium04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Medium05 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)

1940

Large (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Avg. (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)

TABLE VI

COMPARING TREE PRUNING HEURISTICS ON ITC02 CASES. SHOWN IS

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS.

Case
Tree Pruning Heuristics

MV-All LD-All SD-All DSR
01 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
02 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
05 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
06 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
07 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
08 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
09 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
10 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
11 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
12 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
13 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
14 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
15 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
16 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
17 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
18 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
19 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
20 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
Avg. (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)

Memory issues are no longer faced when tree pruning is

used in ITC07 cases. The maximum heap memory
commitment during 31 executions for every problematic
case in the previous section is presented in Table VII. Now,
the maximum heap memory commitment is way below
1.5Gb (the allotted size). Note that we measured the heap
memory sizes utilizing a tool supplied by Java Development
Kit (JDK) called as Java Monitoring and Management
Console.

TABLE VII
THE MAXIMUM MEMORY (MB) COMMITTED DURING 31 EXECUTIONS

FOR SELECTED ITC07 CASES.

Case Maximum Heap Memory Commitment (Gb)
04 0.0272
05 0.1306
07 0.0241
12 0.0564
14 0.1471
18 0.0278
19 0.1587
23 0.1781
24 0.1343

Among the pruning heuristic tested, MV-All is the most

promising one as feasible solutions were found for all cases
exclude cases 1, 2, 9, 10 and 22 as evident in Table VIII.
Excitingly, these results are compatible with those of a
constraint programming approach [11] which also could not
construct a feasible solutions for cases 1, 2, 9 and 10. The
author did not consider case 22 in his experiment which is
possibly hidden by the competition organizer at that point in
time. From observation, we get better results when pruning
is applied using any heuristic. With pruning, the tree size is
considerably reduced. In effect, pruning eliminates poor

choices and guides the search to concentrate more time on
finer options.

TABLE VIII
COMPARING TREE PRUNING HEURISTICS ON ITC07 CASES. SHOWN IS

(MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31 EXECUTIONS.

Case
Tree Pruning Heuristics

MV-All LD-All SD-All DSR
01 (6.39, 3) (7.13, 3) (6.87, 3) (6.94, 3)
02 (11.19, 6) (16.77, 11) (12.13, 9) (12.77, 7)
03 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
04 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
05 (0.03, 0) (0.23, 0) (0.16, 0) (1.84, 0)
06 (0.29, 0) (0.61, 0) (0.42, 0) (0.90, 0)
07 (0.00, 0) (0.00, 0) (0.03, 0) (0.13, 0)
08 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
09 (16.97, 14) (17.61, 13) (15.16. 9) (14.39, 10)
10 (19.71, 15) (24.48, 17) (21.77, 16) (18.74, 14)
11 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
12 (0.00, 0) (0.00, 0) (0.06, 0) (1.35, 0)
13 (1.13, 0) (2.29, 1) (1.26, 0) (2.58, 0)
14 (0.84, 0) (1.55, 0) (2.19, 0) (3.29, 1)
15 (0.00, 0) (0.06, 0) (0.00, 0) (0.10, 0)
16 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
17 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
18 (0.00, 0) (0.00, 0) (0.00, 0) (0.68, 0)
19 (2.77, 0) (3.16, 1) (8.26, 4) (10.61, 6)
20 (0.00, 0) (0.00, 0) (0.00, 0) (0.00, 0)
21 (1.10, 0) (1.03, 0) (0.39, 0) (0.74, 0)
22 (44.68, 41) (49.06, 46) (40.45, 31) (34.87, 28)
23 (6.16, 0) (13.97, 7) (9.23, 2) (8.77, 2)
24 (0.06, 0) (0.35, 0) (1.61, 0) (4.42, 1)
Avg. (4.64, -) (5.76, -) (5.00, -) (5.13, -)

C. Comparing MCTS with GCH and TS

The attainment of MCTS, GCH, and TS in finding
feasible solutions is compared in this section. The GCH
considered here is based on the DSR heuristic. While for the
MCTS, MV-All and DSR heuristics are utilized for the tree
pruning and simulation phase respectively. As shown in
Table IX, all three methods found feasible solutions for all
Socha cases. Both MCTS and TS attained 100% feasibility.

TABLE IX
COMPARING MCTS, GCH, AND TS ON SOCHA CASES. SHOWN IS

(FEASIBILITY %, MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31

EXECUTIONS.

Case MCTS GCH TS
Small01 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
Small02 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
Small03 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
Small04 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
Small05 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
Medium01 (100, 0.00, 0) (6, 5.00, 0) (100, 0.00, 0)
Medium02 (100, 0.00, 0) (29, 2.55, 0) (100, 0.00, 0)
Medium03 (100, 0.00, 0) (74, 0.48, 0) (100, 0.00, 0)
Medium04 (100, 0.00, 0) (10, 3.52, 0) (100, 0.00, 0)
Medium05 (100, 0.00, 0) (71, 0.68, 0) (100, 0.00, 0)
Large (100, 0.00, 0) (3, 6.48, 0) (100, 0.00, 0)

As shown in Table X, feasible solutions are found by all

the three methods for all the ITC02 cases. However, only
MCTS can attain 100% feasibility for all the circumstances.
TS obtains 100% feasibility for the entire cases excluding
claim 7 (87%).

1941

TABLE X
COMPARING MCTS, GCH, AND TS ON ITC02 CASES. SHOWN IS

(FEASIBILITY %, MEAN UNASSIGNED, BEST UNASSIGNED,) FOR N=31

EXECUTIONS.

Case MCTS GCH TS
01 (100, 0.00, 0) (84, 0.23, 0) (100, 0.00, 0)
02 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
03 (100, 0.00, 0) (81, 0.39, 0) (100, 0.00, 0)
04 (100, 0.00, 0) (10, 7.26, 0) (100, 0.00, 0)
05 (100, 0.00, 0) (97, 0.03, 0) (100, 0.00, 0)
06 (100, 0.00, 0) (74, 0.74, 0) (100, 0.00, 0)
07 (100, 0.00, 0) (100, 0.00, 0) (87, 0.13, 0)
08 (100, 0.00, 0) (90, 0.29, 0) (100, 0.00, 0)
09 (100, 0.00, 0) (81, 0.42, 0) (100, 0.00, 0)
10 (100, 0.00, 0) (42, 1.16, 0) (100, 0.00, 0)
11 (100, 0.00, 0) (10, 4.68, 0) (100, 0.00, 0)
12 (100, 0.00, 0) (87, 0.19, 0) (100, 0.00, 0)
13 (100, 0.00, 0) (60, 0.77, 0) (100, 0.00, 0)
14 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
15 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)
16 (100, 0.00, 0) (32, 2.48, 0) (100, 0.00, 0)
17 (100, 0.00, 0) (71, 0.65, 0) (100, 0.00, 0)
18 (100, 0.00, 0) (97, 0.03, 0) (100, 0.00, 0)
19 (100, 0.00, 0) (65, 0.94, 0) (100, 0.00, 0)
20 (100, 0.00, 0) (100, 0.00, 0) (100, 0.00, 0)

Table XI presents the result comparison of the three

methods applied to ITC07 cases. TS is the only methodology
that can find feasible solutions for the entire cases. GCH
obtained feasible solutions for 5 (cases 3, 8, 16, 17 and 20)
out of the 24 cases. Meantime, MCTS obtained feasible
solutions for all the cases exclude cases 1, 2, 9, 10 and 22. In
truth, none of the methods could accomplish 100%
feasibility for all the cases. TS performed competently with
100% feasibility for all the cases excluding cases 11, 19 and
23.

TABLE XI
COMPARING MCTS, GCH, AND TS ON ITC07 CASES. SHOWN IS

(FEASIBILITY %, MEAN UNASSIGNED, BEST UNASSIGNED) FOR N=31

EXECUTIONS.

Case MCTS GCH TS
01 (0, 6.39, 3) (0, 34.29, 26) (100, 0.00, 0)
02 (0, 11.19, 6) (0, 45.03, 36) (100, 0.00, 0)
03 (100, 0.00, 0) (10, 4.35, 0) (100, 0.00, 0)
04 (100, 0.00, 0) (0, 9.94, 4) (100, 0.00, 0)
05 (97, 0.03, 0) (0, 20.42, 13) (100, 0.00, 0)
06 (72, 0.29, 0) (0, 20.26, 11) (100, 0.00, 0)
07 (100, 0.00, 0) (0, 11.87, 6) (100, 0.00, 0)
08 (100, 0.00, 0) (3, 4.97, 0) (100, 0.00, 0)
09 (0, 16.97, 14) (0, 43.26, 32) (100, 0.00, 0)
10 (0, 19.71, 15) (0, 53.29, 43) (100, 0.00, 0)
11 (100, 0.00, 0) (0, 7.10, 1) (87, 0.26, 0)
12 (100, 0, 0.00) (0, 14.26, 4) (100, 0.00, 0)
13 (23, 1.13, 0) (0, 25.26, 17) (100, 0.00, 0)
14 (42, 0.84, 0) (0, 24.81, 16) (100, 0.00, 0)
15 (100, 0.00, 0) (0, 9.97, 5) (100, 0.00, 0)
16 (100, 0.00, 0) (10, 2.39, 0) (100, 0.00, 0)
17 (100, 0.00, 0) (42, 1.26, 0) (100, 0.00, 0)
18 (100, 0.00, 0) (0, 17.61, 10) (100, 0.00, 0)
19 (6, 2.77, 0) (0, 30.23, 23) (81, 0.29, 0)
20 (100, 0.00, 0) (13, 2.52, 0) (100, 0.00, 0)
21 (13, 1.10, 0) (0, 14.65, 10) (100, 0.00, 0)
22 (0, 44.68, 41) (0, 74.16, 63) (100, 0.00, 0)
23 (3, 6.16, 0) (0, 52.81, 40) (94, 0.06, 0)
24 (94, 0.06, 0) (0, 21.94, 13) (100, 0.00, 0)

D. Expanded Execution Time for MCTS

Out of curiosity, the execution time is expanded for
MCTS on chosen ITC07 cases with no feasible solution can
be found previously. Different values for B (in Algorithm 7)
are tested. The results improve on when the execution time
is expanded regardless of B value as evident in Table XII.
The suitable B value for MCTS to work vigorously is subject
to the allotted execution time t. For the shorter execution
time, the value of 0.00001 seems to be more fitting whereas,
for the longer execution time, 0.0001 is more suitable.
MCTS found feasible solutions for cases 1, 2 and 9 with
expanded execution time of 5T and B=0.0001. However, no
feasible solution could be found for cases 10 and 22.

TABLE XII
COMPARING MCTS WITH EXECUTION TIME OF T AND 5T FOR CHOSEN

ITC07 CASES. SHOWN ARE (MEAN UNASSIGNED, BEST UNASSIGNED)
FOR N=31 EXECUTIONS.

Case
B=0.0001 B=0.00001

t=T t=5T t=T t=5T
01 (6.39, 3) (1.10, 0) (6.52, 3) (1.10, 0)
02 (11.19, 6) (2.97, 0) (11.32, 7) (3.52, 0)
09 (16.97, 14) (5.87, 0) (16.26, 8) (7.13, 2)
10 (19.71, 15) (9.81, 5) (19.52, 16) (10.13, 6)
22 (44.68, 41) (28.23, 19) (44.74, 39) (29.29, 21)
Avg. (19.79, -) (9.59, -) (19.67, -) (10.23, -)

E. Discussion

We were faced with a heap memory issue when all
possible actions expand the tree at one time. It was
intentional as expanding the tree by one action at a time is
computationally expensive. This decision is necessary as the
CTP that we are working on, is restrained by an execution
time limit because of competition rules. The heap memory
issue was addressed by pruning the tree based on heuristics.
The number of nodes appended to the tree (and therefore
heap memory commitment) was greatly reduced by tree
pruning. However paths to good solutions may also be cut
off. Computational experience shows that results are affected
by the value of B (selection part of MCTS). For longer
execution times, a higher value of B allows MCTS to
explore the search space. For shorter execution time, a lower
value of B is preferred so that MCTS can exploit the search
space.

Unlike games like Go, MCTS did not work well for CTP.
MCTS is lacking the flexibility provided by local search
methodologies (e.g. TS). In every iteration of MCTS, events
are constructively assigned. In other words, moves made
cannot be changed. This suits perfectly for Go however not
for timetabling as events can be unassigned and reassigned
at any time. As a result, the search space connectivity
offered by MCTS is lacking compared to that of a local
search. The effort to hybridize the algorithm with local
search is also hampered by the rigid tree structure of MCTS.
In fact, local search is the key for a similar learning-based
algorithms such as Ant Colony Optimization (ACO) in
obtaining good results. The use of learning-based algorithms
(MCTS) is restricted by the time limit imposed on the CTP.
Usually, reasonable computational resources are required for
this type of algorithm to perform effectively.

1942

IV. CONCLUSION

Random and heuristic simulation (DSR) for MCTS were
compared. Heuristic-based simulation seems to be superior
to a random simulation. We believe simulation is made more
practical by heuristics in comparison to random simulation.
Several types of tree pruning heuristics such as MV-All, LD-
All, SD-All and DSR were also tested. The efficacy of
MTCS in constructing feasible solutions is vastly improved
by tree pruning regarding the average number of unassigned
events. MV-All performed the best out of the heuristics as
shown by the empirical results presented. Effectively,
heuristic-based simulation and tree pruning improved the
performance of the basic MCTS for the CTP.

MCTS, GCH and TS were compared in finding feasible
solutions. In terms of performance, MCTS was useful for
Socha and ITC02 cases but lacking for ITC07 cases. Even
with expanded execution time, MCTS was unable to
construct a feasible solution for cases 10 and 22 of ITC07.
Overall, MCTS performed superior to GCH but worse than
TS in finding feasible solutions. MCTS requires time to
perform competently and well suited for games like Go but
not for the competitive and time-restricted CTP
(competitions). Meanwhile, TS shows excellent potential in
finding feasible solutions for the CTP.

ACKNOWLEDGMENT

This work was funded by SGPUMS grant (Reference no.
SLB0170-2018) provided by The Centre of Research and
Innovation, Universiti Malaysia Sabah. Many thanks to the
academic members of the Faculty of Computing and
Informatics, Universiti Malaysia Sabah, in providing
constructive comments for the improvement of this paper.

REFERENCES
[1] R. Coulom, “Monte-Carlo Tree Search in Crazy Stone,” in 12th

Game Programming Workshop, 2007.
[2] M. Enzenberger, M. Muller, B. Arneson, and R. Segal, “Fuego-An

Open-Source Framework for Board Games and Go Engine Based on
Monte Carlo Tree Search,” {IEEE} Trans. Comput. Intell. {AI}
Games, vol. 2, no. 4, pp. 259–270, 2010.

[3] C. S. Lee et al., “The Computational Intelligence of {MoGo}
Revealed in Taiwan’s Computer Go Tournaments,” IEEE Trans.
Comput. Intell. {AI} Games, vol. 1, no. 1, pp. 73–89, 2009.

[4] T. P. Runarsson, M. Schoenauer, and M. Sebag, “Pilot, rollout and
monte carlo tree search methods for job shop scheduling,” in
Learning and Intelligent Optimization, Springer, 2012, pp. 160–174.

[5] M. P. D. Schadd, M. H. M. Winands, H. J. Van Den Herik, G. M.-B.
Chaslot, and J. W. H. M. Uiterwijk, “Single-player monte-carlo tree
search,” in Computers and Games, Springer, 2008, pp. 1–12.

[6] S. Matsumoto, N. Hirosue, K. Itonaga, N. Ueno, and H. Ishii,
“Monte-Carlo Tree Search for a reentrant scheduling problem,” in
Computers and Industrial Engineering (CIE), 2010 40th
International Conference on, 2010, pp. 1–6.

[7] G. Chaslot, S. De Jong, J.-T. Saito, and J. Uiterwijk, “Monte-Carlo
tree search in production management problems,” in Proceedings of
the 18th BeNeLux Conference on Artificial Intelligence, 2006, pp.
91–98.

[8] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “A honey-bee mating
optimization algorithm for educational timetabling problems,” Eur. J.
Oper. Res., vol. 216, no. 3, pp. 533–543, 2012.

[9] H. Arntzen and A. Lokketangen, “A local search heuristic for a
university timetabling problem,” nine, vol. 1, no. T2, p. T45, 2003.

[10] S. Abdullah, K. Shaker, B. McCollum, and P. McMullan,
“Construction of course timetables based on great deluge and tabu
search,” in Metaheuristics Int. Conf., VIII Meteheuristic, 2009, pp.
13–16.

[11] H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos,
“Local search and constraint programming for the post enrolment-
based course timetabling problem,” Ann. Oper. Res., vol. 194, no. 1,
pp. 111–135, 2012.

[12] S. L. Goh, G. Kendall, and N. R. Sabar, “Improved Local Search
Approaches to Solve Post Enrolment Course Timetabling Problem,”
Eur. J. Oper. Res., 2017.

[13] S. L. Goh, G. Kendall, and N. R. Sabar, “Simulated annealing with
improved reheating and learning for the post enrolment course
timetabling problem,” J. Oper. Res. Soc., pp. 1–16, 2018.

[14] I. Blochliger and N. Zufferey, “A graph colouring heuristic using
partial solutions and a reactive tabu scheme,” Comput. Oper. Res.,
vol. 35, no. 3, pp. 960–975, 2008.

[15] R. Lewis and J. Thompson, “Analysing the effects of solution space
connectivity with an effective metaheuristic for the course
timetabling problem,” Eur. J. Oper. Res., vol. 240, no. 3, pp. 637–
648, 2015.

[16] M. Chiarandini, C. Fawcett, and H. H. Hoos, “A modular multiphase
heuristic solver for post enrollment course timetabling,” in
Proceedings of the 7th International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2008), 2008.

[17] A. Abuhamdah, M. Ayob, G. Kendall, and N. R. Sabar, “Population
based Local Search for university course timetabling problems,” Appl.
Intell., vol. 40, no. 1, pp. 44–53, 2014.

[18] G. Chaslot, “Monte-carlo tree search,” PhD thesis, Maastricht
University, 2010.

[19] V. Kumar, “Algorithms for Constraint-Satisfaction Problems: A
Survey,” AI Mag., vol. 13, no. 1, p. 32, 1992.

[20] L. A. Taylor, “Local search methods for the post enrolment-based
course timetabling problem,” Cardiff University, 2013.

[21] P. Drake and S. Uurtamo, “Move Ordering vs Heavy Playouts:
Where Should Heuristics Be Applied in Monte Carlo Go?,” in
Proceedings of the 3rd North American Game-On Conference, 2007.

[22] D. Silver and G. Tesauro, “Monte-Carlo Simulation Balancing,” in
Proceedings of the 26th Annual International Conference on
Machine Learning, 2009, pp. 945–952.

[23] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo Tree
Search in Hex,” {IEEE} Trans. Comput. Intell. {AI} Games, vol. 2,
no. 4, pp. 251–258, 2010.

[24] S. He et al., “Game Player Strategy Pattern Recognition and How
{UCT} Algorithms Apply Pre-knowledge of Player’s Strategy to
Improve Opponent {AI},” in 2008 International Conference on
Computational Intelligence for Modelling Control Automation, 2008,
pp. 1177–1181.

[25] J. Huang, Z. Liu, B. Lu, and F. Xiao, “Pruning in {UCT}
Algorithm,” in 2010 International Conference on Technologies and
Applications of Artificial Intelligence, 2010, pp. 177–181.

1943

