

Vol.10 (2020) No. 3

ISSN: 2088-5334

Zsmell – Code Smell Detection for Open Source Software
Aziz Nanthaamornphonga,1, Tanawat Saeanga, Panyaprach Tularaka

a College of Computing, Prince of Songkla University, Phuket Campus, Kathu, 83120, Thailand
E-mail: 1aziz.n@phuket.psu.ac.th

Abstract— Today, open-source software (OSS) is used in various applications. It has played a vital role in information systems of
many user groups such as commercials, research, education, public health, and tourism. It is also a source of additional knowledge for
collaborators because this type of software is easily accessible through websites that provide management of version control services
such as GitHub. However, a recent study shows an increasing trend in the existence of code smells. In OSS, there is a growing number
of code smells that cause software errors. Having a code smell in software is a serious issue since it impacts the software in terms of
deployment, maintenance as well as user confidence toward the software. Finding code smells in the early stages of software
development would provide for better software maintenance and reliability; thus, researchers invented the Zsmell software system
that helps search for code smells in the source code saved in GitHub. Developed systems display data related to code smells in each
source code version that was modified by collaborators. Thus, the developers will be able to employ the proper refactoring method,
which is a change in the internal structure of software without changing the original functionality of the software. We believe that this
system will enable open source collaborators to improve the quality of their OSS, especially on code smell reduction and the
understanding of various types of code smell commonly found in OSS projects.

Keywords— software engineering; open source software; software maintenance; code smell; software quality.

I. INTRODUCTION

At present, open-source software (OSS) has been
developed to meet a variety of needs and is likely to be
applied in many areas. In the software development process,
OSS is co-developed by collaborators with diverse
experiences from around the world. OSS solves problems in
different ways, resulting in the successful operation of OSS
[1]–[5]. However, restrictions on software maintenance may
exist, as most collaborators focus on software mechanics,
resulting in the development of source code such as
difficulty of source code comprehension, increasingly
complex source code, or poor system design. Some of these
problems are caused by code smells, which could cause
problems during operation or maintenance, such as time and
high development cost [6]–[9].

The existence of code smells in software is a severe issue
because it impacts the software in terms of deployment,
maintenance, and user confidence towards the software. In
software engineering, there are several ways to address code
smells. One of the approaches is refactoring, i.e., changing
the internal structure of the software without altering its
original functionality. The purpose of refactoring is to make
the software easy to understand, enhancing software
maintenance. Before refactoring, it is necessary to identify
which source code will be refactored. Generally, the
developers perform the refactoring to fix the section with

code smells, which is a part of the code that is likely to cause
errors or bugs due to poor coding or mistakes committed by
the developer. For instance, if the duplicated code (code
clone) exists in the module, the developers will employ some
refactoring methods (e.g., extract method, pull up method) to
minimize such duplicated code.

Based on these problems, we propose Zsmell, which helps
an OSS collaborator team find code smells in OSS by
working with the GitHub system that is a famous online
software version management system from OSS
collaborators around the world [10]. Besides, the GitHub
API service provides a variety of data services available in
the system, such as user data, and OSS data systems. Thus,
there are advantages from using these GitHub APIs to
develop the Zsmell system, which can detect code smells in
OSS based on software metrics. The system can display
code smells in source code, the statistical data on the number
of code smells generated by the collaborators within a team,
and code smell locations for software collaborators.

The code smell information obtained from the proposed
system would help developers to improve source code
quality, reduce future inconsistencies, and perform software
maintenance tasks. Additionally, software engineering
researchers better understand the cause of code smells and
bugs in OSS projects.

The remainder of this paper is organized as follows.
Section II provides an overview of related work. Section III

1035

describes the Zsmell system and provides system evaluation.
Finally, conclusions are drawn, and future work is presented
in Section IV.

II. MATERIAL AND METHOD

This section explains the details of related literature and
technology. Also, the Zsmell system is described.

A. Related Literature

A code smell is the feature of software code that can
cause software malfunction or quality degradation, which
increases the risk of future problems [11]–[13]. In software
engineering practices, software collaborators should detect
code smells before they become defects, which can cause
enormous losses. In the past, researchers had specified the
number of code smell types; however, for the current version
of Zsmell, there are seven types, including the following:

• A large class is a class consisting of many variables,
methods, objects, and functions [14].

• Long method is a method that can be understood or
modified with difficulty [15].

• Lazy class is a low function class that consumes
excessive memory space [14].

• Long Parameter List is a code that has excessively
sized parameters, so it difficult to understand [16].

• Cyclomatic complexity is a code consisting of several
conditions that make it difficult to modify or edit [17].

• Multiple Returns is a code that uses a command to
send a value back unnecessarily, so it is difficult to
understand the code [18].

• Message Chains is an object that requests another
object that objects request yet another one, and so on.
Any changes in these relationships require modifying
the object [19].

Yamashita et al. [20] detected whether researchers and
collaborators are concerned with or aware of code smells. In
the past, there has been much research on how to prevent
and remove code smells, but research is insufficient, and
code smells still cause damage. Researchers completed an
online survey of 85 professional collaborators. The results of
the research show that only 4% of collaborators understand
code smells when most collaborators should be required to
be versed in a tool that helps to identify code smells to show
real-time results.

A study related to code smells by Menzies et al.
investigated whether researchers and developers were
concerned with or value the importance of code smells
differently [21]. Many studies have addressed this issue, yet
code smells continue to cause adverse effects. Yoshida et al.
studied the relationship between refactoring and code smells
to explore which refactoring model is used by developers to
fix their code smells [22]. The study aimed to support code
writing by finding a suitable refactoring model. Silva et al.
examined the motivation for developers to employ
refactoring with the objective of exploring the real reason
behind refactoring decisions [23].

For OSS projects, several studies have focused on
processes and procedures for maintaining OSS [24]–[26].
Nevertheless, from the survey of related literature, there are
no tools for finding code smells in OSS projects that can
work with GitHub.

B. Related Technology

1) GitHub API: GitHub API provides data services from
the GitHub website via the HTTPS protocol and is
accessible from https://api.github.com. All data are exported
in JSON (JavaScript Object Notation) format. GitHub API
technology is used to retrieve data from GitHub, for example,
to include website user data, user OSS data, and OSS source
code revision.

2) Java Parser: Java Parser is a library for analyzing
source code in Java to be an abstract syntax tree for data
structure in code smells searching.

Fig. 1 Overview of the Zsmell System

To search code smells existed in the project, the program

has to read the data structure of the given source code. If any
structure matches the conditions specified in the program,
the program collects code smell information into the
database.

C. Zsmell System
The main functions of the Zsmell system include:

• Finding code smells existed in OSS projects stored in
GitHub;

• Using the search results to summarize the number of
code smells;

• Calculating statistics on code smells generated by
collaborators for each revision;

• Visualizing the evolution of code smells; and
• Generating the reports

The overview of the process is shown in Figure 1. The
collaborators must log in with a GitHub account to authorize
and to select the user OSS to search for code smells via the
web application. The developed Zsmell system can detect
code smells only projects implemented by using the Java
programming language. After that, the system can save the
code smell data in the MongoDB database via web services
and display data in graphical form via a website. Details for
each part are presented in the sections below.

1) Web Application: We have developed a web
application with an Angular Framework for data processing
on web browsers. Users can select OSS software for
searching code smells via a web browser. Users can view
and summarize the results of code smells through the display
of statistical data in graphical format for software quality
improvement and empirical evidence to encourage
collaborators to be more concerned with the issue of code
smells.

1036

2) Web Services: ExpressJS technology is used in this

work for web services development. ExpressJS is a
framework for NodeJS that has main functions to exchange
data as follows.

• GitHub API - web services are communication
intermediaries between the web application and the
GitHub API, which are responsible for identifying the
user and accessing their project data from the GitHub
service. By default, all requests to
https://api.github.com receive the v3 version of the
REST API. All API access is over HTTPS. All data is
sent and received as JSON. The system authenticates
through GitHub API by using OAuth2.

• Java Application - web services send all project data
that the user selects to the Java application to find
code smells in the project and send them to the web
services.

• MongoDB – the processor of the data when the web
service receives the data before saving the code smells
to the database.

• Web Application - web services provide various data
services for visualizing the results on the application
website.

3) Java application: Java applications are primarily
responsible for identifying code smells from OSS derived
from web services. In each project submitted, one project
can be divided into two types.

• The Master Project is the current state of the source
code, which is all code in the project that is on the
main branch. More specifically, the initial project in
GitHub is a master project, which can have branches
in the future.

• The Commit Project is a source code revision of each
collaborator in the team with details of the person who
recorded the changes, including which files and lines
were edited.

When both projects are entirely found, the data of code
smells are gathered by identifying the project files and lines
of code that have code smells. This Java application can find
the following previously described seven types of code
smells: Large class, Long Method, Lazy class, Long
Parameter List, Cyclomatic Complexity, Multiple Returns,
and Message Chains. To reduce the processing time, the
application has been designed to utilize the multi-thread
concepts in which each thread simultaneously detects each
code smell type.

The system reads the submitted source code and all the
source code for identifying the code smell format. If any part
of the source code is found with the conditions shown in
Table 1, the source code is the code smell and returned to the
web services. The conditions shown in Table 1 are based on
the definition of the code smell types that were previously
described. However, the conditions in Table 1 are the only
preliminary criterion for determining code smells. Users can
edit these considerations of criterion via the web application.
For example, the user can adjust the threshold of Large class
by either increasing or decreasing the number of lines of
code. However, the system does not allow the user to reduce
the value for some code smell types, including Multiple
Returns and Message Chains.

TABLE I
CODE SMELL TYPES AND CRITERION

Code Smell Criterion
Long Method • Number of lines of code without

comments in the source file < 50 or
• Algorithm complexity > 5

Large class • Number of methods > 5 or
• Number of lines of code without

comments in the source file > 300
Lazy class • Number of methods = 0 or

• Number of lines of code without

comments in the source file < 100 and

the complexity of the class algorithm

per number of methods < or = 2
Long Parameter

List
The method has a few parameters > 4

Cyclomatic

Complexity
Algorithm complexity, including the

number of loops and control

statements > 10
Multiple Returns The number of methods that have the

return command > 1
Message Chains The number of calls in the source file to

other methods > 2

III. RESULTS AND DISCUSSION

The method for using the proposed web application is
described along with examples in this section.

First, the user must have a GitHub user account that
contains an OSS developed in Java. When the user account
is ready, the user needs to log in via GitHub and accept
permission to access the user data and projects from the
Zsmell application in GitHub. After that, the user has been
brought to the system homepage. The user can select his/her
projects that need to analyze the code smell from the left
menu bar, as shown in Figure 2. Only projects, which are
under the “My Repository” menu can be analyzed to search
for code smells.

Fig. 2 System Homepage

When a user has selected the projects from which to find

code smells, the project details are shown in Figure 3. The
user presses “Click to Analyze” to search for the code smells
of the project. The user then must wait for the results. The

1037

waiting time depends on the size of the selected projects.
After the analysis is completed, the system notifies the user
through the browser. Users can view statistical results in
graphical forms.

Fig. 3 Details of the Project Selected by the User

In terms of search results, the researchers developed the

Zsmell system to display graphics in the application with the
following details.

A. Repository Reports Menu

The repository reports menu is a summary menu of code
smell search results, consisting of the following three sub-
menus:

1) Repository Reports Menu: The graphically results of
code smells in graph format are divided into the following
three types:

• a graph that shows the total number of code smells by
code smell types,

• a graph that shows code smells by collaborators, and
• a graph that shows the evolution of code smells in a

project.
All the graphs are interactive, and many are pannable and

zoomable. These charts are based on pure HTML5
technology.

Figure 4 shows the total number of code smells divided
by type in a bar graph. The vertical axis is the number of
code smells, and the horizontal axis is the code smell types
found within the project.

Fig. 4 Number of Code Smells Divided by Type

Figure 5 shows the total number of all code smells

produced by software collaborators in a bar graph. The

vertical axis is the number of code smells, and the horizontal
axis is the collaborators’ code in the project. Figure 6 shows
the evolution of the code smells generated by each
collaborator. The horizontal axis represents the Git commit
IDs performed by the collaborator. Each Git commit ID is
automatically generated to identify the commits uniquely.
The vertical axis is the number of existing code smells.

2) Commits Menu: Displaying the amount of code
smells in the menu by showing the number of code smells in
each source code revision (Figure 7). Users can select to
view each revision by choosing Git ID. The vertical axis
shows the number of code smells, and the horizontal axis
shows code smell types.

Fig. 5 Number of Code Smells Divided by Collaborators

Fig. 6 Number of Code Smells Divided by Commit SHA

Fig. 7 Number and Types of Code Smells in Commits

3) Source Code Menu: Figure 8 shows the relationship
between the number of code smells and code smell types of

1038

a selected collaborator. The vertical axis indicates the
number of code smells, and the horizontal axis shows code
smell types that a collaborator revise.

B. Repository Reports Menu

Displaying the number of code smells in this menu shows
some code smells by summarizing an overview from the
collaborator revisions. Users can select the code of a
collaborator who participates in the project and has revised
source code. The code smell area is highlighted with a
different color, as shown in Figure 9. For example, after the
user selected the “ReaderImpl.java” and the code smell type
as “Cyclomatic Complexity,” the code where the algorithm

complexity > 10 was highlighted with a different color. This
feature helps the user identify the code smells without
reading the code line by line.

Fig. 8 Number and Types of Code Smells by Collaborators

Fig. 9 Source Code that File Selected

TABLE II
OPEN SOURCE PROJECTS TESTED

OSS# OSS Project Number of
classes

Number of
Methods

1 Rebound 54 476

2 Java-concurrency-patterns 53 164

3 URL-Detector 25 225

4 JavaMultiThreading 42 104

5 Greplin-bloom-filter 14 118

C. Evaluation

We have empirically evaluated the system in terms of
correctness and user satisfaction. The following subsections
present the evaluation results.

TABLE III
TEST RESULTS

Code Smell OSS#1 OSS#2 OSS#3 OSS#4 OSS#5

Long Method 7(7) 4(4) 21(21) 4(4) 16(16)

Large class 0(0) 0(0) 1(1) 0(0) 0(0)

Lazy class 30(30) 33(33) 5(5) 12(12) 4(4)

Long
Parameter List

7(7) 0(0) 2(2) 0(0) 4(4)

Cyclomatic
Complexity

9(9) 0(0) 10(10) 0(0) 4(4)

Multiple
Returns

18(18) 2(2) 15(15) 0(0) 3(3)

Message Chain 20(20) 5(5) 0(0) 0(0) 5(5)

1) Correctness: To check how the system provides the
correctness results, five GitHub OSS projects stored in
GitHub were selected to find code smell types mentioned
above. Those projects include:

• Rebound: A Java library that models spring dynamics
and adds real-world physics.

• Java-concurrency-patterns: Concurrency Patterns and
features found in Java, through multithreaded
programming.

• URL-Detector: A Java library to detect and normalize
URLs in text.

• JavaMultiThreading: Examples of Java
MultiThreading concepts.

• Greplin-bloom-filter: A Bloom Filter implementation
in Java, that optionally supports persistence and
counting buckets.

Table 2 shows the OSS project details, including the
number of classes and methods. The correctness test
procedure consists of the following steps.

• Code smells were found manually or with Zsmell.
• The 2nd and 3rd authors searched for code smells in

each type. When a bad code was found, the data have
been saved, such as the type of code smells, file name,
and line that represents the code smell. Each
researcher separately performed a search.

• The results from the 2nd and 3rd authors were
compared. If the results were inconsistent, the 2nd and
3rd authors discussed the results.

• Tests were conducted using Zsmell.
• The results of the two methods were compared to

present the difference between such methods.
The results for code smells from both tests were compared

to include the number of each code smell type, as shown in
Table 3. In Table 3, each field of the table shows the
following two numbers: the first is the number of code
smells found by the researcher, and the numbers in
parentheses are the number of code smells found by Zsmell.
The table shows the accuracy of finding code smells. Zsmell
could find all code smells according to the conditions listed
in Table 3 (100%).

1039

2) Satisfaction Results: We asked the participants,
including 40 undergraduate students who enrolled in the
software construction and maintenance class, to use Zsmell.
We chose these students as participants because they were
studying code smell and refactoring topics in the class. Thus,
we believed that the Zsmell system would increase student
understanding of code smells. Each participant had to use
Zsmell to detect code smells that existed in the Rebound
Project, and the time was limited to one hour. Once the time
ended, the students completed an online questionnaire. The
questionnaire consisted of 5 Likert-scale questions
addressing the following topics:

• The ease of use of the software (e.g., it requires the
fewest steps possible to accomplish what the user
wants to do with it.)

• The satisfaction with messages which appear on the
screen (the messages can be of the following types:
notification, confirmation, warning, and error.)

• The satisfaction with instructions for commands or
choice (the target task is completed with less effort).

• The satisfaction with the speed of the system (the
response of the system meets the user’s expectation).

• The satisfaction with the report (the system can
generate sufficient reports).

To ensure that the survey questions were comprehensible
and valid with respect to the objective, we conducted a pilot
study to observe all stages of the survey process, including
the administration of the questionnaire. The pilot study
duplicated the final survey design on a small scale from
beginning to end, including the data processing and analysis
steps. The pilot study allowed us to see how well the
questionnaire performs during all steps in the survey. We
randomly selected 5% of the participants from the target lists.
These participants were excluded from the subsequent major
targets.

Finally, we received the survey responses from all
participants. Table 4 presents the survey results. Overall, the
participants were satisfied with the software; however,
students provided the following comments:

• The system should have the capability to export the
report into various formats (e.g., PDF, MS Excel, MS
Word)

• Additional code smell types should be made available.
• The system should define each code smell type (e.g.,

help documentation).
• The system should detect more code smell types (e.g.,

Data Clumps, Code Clone).

3) Limitations: Based on the evaluation, the limitations
of the proposed system can be divided into four-folds.

• Concerning the issue of OSS development experience,
students may respond differently to questions than
OSS developers working on OSS projects. Thus, the
survey results may not show the real benefits of our
proposed tool to the OSS developers. To survey with
the OSS developers should help us better understand
how Zsmell was adequately designed for developers.

• The system performance must be measured in terms
of the quantitative method how the system utilizes the
resources.

• The current version can only detect seven code smell
types, which can be extended for more code smell
types.

• The obtained evaluation results might be specific to
the small projects that were used. More future
evaluations, with larger projects, are needed to
confirm the results further and draw more general
conclusions.

TABLE IV
 RESULTS OF USER SATISFACTION

Question

St
ro

ng
 A

gr
ee

(%

)

A
gr

ee
 (

%
)

N
ei

th
er

 A
gr

ee

no
r

D
is

ag
re

e
(%

)

D
is

ag
re

e
(%

)

St
ro

ng
 D

is
ag

re
e

(%
)

The software is easy to use 75 20 5 0 0

The messages which appear
on screen are satisfied

80 15 5 0 0

The instructions for
commands or choice are
satisfied

85 10 5 0 0

In your opinion, the system
returns provide the results
quickly

70 17.5 12.5 0 0

The reports are satisfied 77.5 20 2.5 0 0

IV. CONCLUSIONS

Zsmell is a system that helps find code smells of OSS
projects saved in GitHub. Zsmell is used to determine what
types of code smells occurred within a project, specify
whether the developers have abilities to improve code smells
or not, and encourage collaborators to pay more attention to
code smells. This proposed system is a part of creating
software with higher quality and better ease of maintenance.
In the future, the system will be improved by adding types of
code smells to be found by the system, including to make the
procession more efficient and faster. Additionally, the
system is planned to be released in an open source system
for interested users.

REFERENCES
[1] G. W. Hislop and H. J. C. Ellis, “Humanitarian Open Source

Software in Computing Education,” Computer (Long. Beach. Calif).,
vol. 50, no. 10, pp. 98–101, 2017.

[2] D. L. Olson, B. Johansson, and R. A. De Carvalho, “Open source
ERP business model framework,” Robot. Comput. Integr. Manuf.,
vol. 50, pp. 30–36, 2018.

[3] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “A Systematic
Mapping Study of Software Development with GitHub,” IEEE
Access, vol. 5, pp. 7173–7192, 2017.

[4] E. Katsamakas and M. Xin, “Open source adoption strategy,”
Electron. Commer. Res. Appl., vol. 36, p. 100872, 2019.

[5] A. S. Sohal, S. K. Gupta, and H. Singh, “Trust in Open Source
Software Development Communities: A Comprehensive Analysis,”
Int. J. Open Source Softw. Process., vol. 9, no. 4, pp. 1–19, 2018.

[6] H. Liu, B. Li, Y. Yang, W. Ma, and R. Jia, “Exploring the Impact of
Code Smells on Fine-grained Structural Change-proneness,” Int. J.
Softw. Eng. Knowl. Eng., vol. 28, no. 1487–1516, Apr. 2018.

[7] A. Cairo, G. Carneiro, and M. Monteiro, “The Impact of Code Smells
on Software Bugs: A Systematic Literature Review,” Information,
vol. 9, p. 273, Nov. 2018.

1040

[8] T. Sharma and D. Spinellis, “A survey on software smells,” J. Syst.
Softw., vol. 138, pp. 158–173, 2018.

[9] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“The Impact of Code Review on Architectural Changes,” IEEE
Trans. Softw. Eng., p. 1, 2019.

[10] C. Liu, D. Yang, X. Zhang, B. Ray, and M. M. Rahman,
“Recommending GitHub Projects for Developer Onboarding,” IEEE
Access, vol. 6, pp. 52082–52094, 2018.

[11] S. Singh and S. Kaur, “A systematic literature review: Refactoring
for disclosing code smells in object-oriented software,” Ain Shams
Eng. J., vol. 9, no. 4, pp. 2129–2151, 2018.

[12] M. Tufano et al., “When and Why Your Code Starts to Smell Bad
(and Whether the Smells Go Away),” IEEE Trans. Softw. Eng., vol.
43, no. 11, pp. 1063–1088, 2017.

[13] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Softw., vol. 35, no. 3, pp. 56–62, 2018.

[14] J. Dexun, M. Peijun, S. Xiaohong, and W. Tiantian, “Detection and
Refactoring of Bad Smell Caused by Large Scale,” Int. J. Softw. Eng.
Appl., vol. 4, no. 5, pp. 1–13, 2013.

[15] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection of
bad smells in code: An experimental assessment,” J. Object Technol.,
vol. 11, no. 2, pp. 1–38, 2012.

[16] G. Vale and E. Figueiredo, “A Method to Derive Metric Thresholds
for Software Product Lines,” in Proceedings - 29th Brazilian
Symposium on Software Engineering, SBES 2015, 2015, pp. 110–119.

[17] S. Kaur and R. Maini, “Analysis of Various Software Metrics Used
to Detect Bad Smells,” Int. J. Eng. Sci., vol. 5, no. 6, pp. 14–20, 2016.

[18] S. McConnell, Code complete. Pearson Education, 2004.
[19] M. Chains, “Message Chains,” 2019. [Online]. Available:

https://refactoring.guru/. [Accessed: 10-Jul-2019].
[20] A. Yamashita and L. Moonen, “Do developers care about code

smells? An exploratory survey,” in Proceedings - Working
Conference on Reverse Engineering, WCRE, 2013, pp. 242–251.

[21] T. Menzies, L. Williams, and T. Zimmermann, "Perspectives on data
science for software engineering," Morgan Kaufmann, 2016.

[22] Y. Norihiro, T. Saika, E. Choi, A. Ouni, and K. Inoue, “Revisiting
the Relationship Between Code Smells and Refactoring.” In
Proceedings of the 24th International Conference on Program
Comprehension, 2016, pp. 1–4.

[23] S. Danilo, N. Tsantalis, and M. Tulio Valente, “Why We Refactor?
Confessions of Github Contributors,” In Proceedings of the 24th
ACM Sigsoft International Symposium on Foundations of Software
Engineering, 2016, pp. 858–70.

[24] S. Lee, H. Baek, and J. Jahng, “Governance strategies for open
collaboration: Focusing on resource allocation in open source
software development organizations,” Int. J. Inf. Manage., vol. 37, no.
5, pp. 431–437, 2017.

[25] A. Adewumi, S. Misra, N. Omoregbe, B. Crawford, and R. Soto, “A
systematic literature review of open source software quality
assessment models.,” Springerplus, vol. 5, no. 1, p. 1936, 2016.

[26] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch, “Open
source software ecosystems: A Systematic mapping,” Inf. Softw.
Technol., vol. 91, pp. 160–185, 2017.

1041

