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Abstract— The composition mechanisms and interactions of current component models are mostly base on port or function calls from 
other components. However, in both styles, the number of interactions that depend on the number of ports and method calls may 
increase dramatically. Hence, to avoid such complexity of composing components and coordination of the interaction among them, a 
component model and policy to provide a separation between the components and coordinating is needed. This study presents a 
formal specification of a novel component model for discrete-event and non-blocking component-based systems called PUTRACOM. 
A new component model, named PUTRACOM is presented in this paper. PUTRACOM supports to develop concurrent software 
systems with discrete-event. PUTRACOM defines components by two essential features; they are the Observer/Observable unit and a 
computation unit. These two features allow a component to have fixed behavior without any dependency on other components. The 
components can be composed using a well-defined set of connectors. PUTRACOM has been formally defined based on the well-
defined and sound methods like CSP and RTSs. PUTRACOM provides a way to construct components and coordinate them with a 
well-founded mechanism. The model defines a set of exogenous connectors and an observer/observable unit to encapsulate 
components and coordination. In order to illustrate the way of component composition in the proposed model, an example of the 
control system of a refrigerator is used. Moreover, to evaluate its applicability, the example has been implemented in Colored Petri 
Net (CPN) tools. 
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I. INTRODUCTION 

Component-based software development (CBSD) is a 
new paradigm to tame the complexity of constructing large 
software systems. However, constructing the software 
components, synthesizing them together, and coordinating 
them are challenging tasks. It is because of complex 
composition styles conferred in the current component 
models. Their way of composing component and interaction 
among them are mostly based on port calling a function from 
other components (for example, ADLs). The complexity 
becomes worse when computation and coordination are not 
separated, and some couplings exist between the components 
in the concurrent component models. To address this 
problem, a component model that supports the reliable 
separation of computation and coordination is required. 

In this paper, a concurrent component model called 
PUTRACOM that can mitigate the complexity of the 
component-based model by encapsulating computation and 
coordination among composed components is presented 
formally. The first contribution is the concept of the 
Observer/Observable Unit (OOU) in the components to 
encapsulate computations. OOU notifies the connectors, then 
the components are free from any direct message passing or 
invocation, which leads to encapsulation. Encapsulation 

prevents direct intervention among the components. 
Therefore, coupling in the model will be eliminated. OOU 
also avoids having multiple ports like what is presented in 
the typical component models to reduce complexity. 

Second, a new set of exogenous connectors to encapsulate 
coordination is proposed. The considerable characteristic of 
our exogenous connectors is that the components never be 
engaged in control. In this way, computation and 
coordination will be separated. The novelty of the new 
exogenous connectors is the observation of OOUs by their 
subscribed components. By observing OOUs, connectors 
handle coordination all over the system without involving 
the computation unit of components. 

Third, our connectors compose components 
synchronously, asynchronously, sequentially, conditionally, 
and iteratively. Finally, the behavior of the components and 
connectors are defined formally. This research defines 
components using Reactive Transition systems (RTS) [1], 
[2]. The composition and interactions between components 
are expressed in Communication Sequential Processes (CSP) 
[3], [4]. The proposed model has been evaluated to prove its 
applicability to the real-life systems in Colored Petri Net 
Tools (CPN) [5]. 

PUTRACOM is based on exogenous connectors. 
Exogenous connectors control the interaction between 
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components outside of the components. The proposed 
component model in this study is unlike ADL likes 
component model [6]–[9]. ProCom also is used in real-life 
systems [10]. One component model with this kind of 
connectors is X-MAN [11]–[13]. X-MAN component model 
has some similar aspects to the proposed model in this work. 
It encapsulates computation and control and let the 
components to be decoupled. X-MAN is an exogenous based 
component model. Components never call methods or 
functions in other components. Connectors construct 
composed components. Connectors in X-MAN encapsulates 
control between components and let the component and 
composite component to be decoupled [14]. However, their 
connectors encapsulate only sequential controls. The 
underlying philosophy behind X-MAN is a proper method 
for our goal. This study enriched X-MAN by extending this 
model to support concurrency. 

To specify the model formally, it is vital to choose a 
proper formalism which can define all the essential 
properties of components, connectors, composition 
mechanism, and interactions among them. Communication 
Sequential Processes (CSP) [3] is a well-defined parallel 
computation formalism to define processes running in 
parallel. The processes communicate using multiple 
operators such as sequential composition, broadcasting, 
parallel composition, iteration, and conditional composition. 
The connectors in PUTRACOM are also defined based on 
these operators. However, the message passing 
communication model in CSP is not supported in 
PUTRACOM. Processes in CSP are defined by Label 
Transition Systems (LTSs). LTSs express the behavior of 
processes and semantic of all composition operators. 
However, in LTS, input, output, and internal events are not 

distinguished explicitly. In this paper, an improved kind of 
LTS called Reactive Transition Systems (RTSs) had been 
adopted [1]. RTS models the internal behavior of 
components and separates it from input and output behavior. 

II. MATERIAL AND METHOD 

This section aims at defining atomic components. All 
components consist of a two different kinds of units called 
CU and (OOU). As shown in Fig. 1, CU (Computation Unit) 
encapsulates computation that it will never call other 
components. Input/output events with their corresponding 
data are manifested as a multiset in OOU 
(Observer/Observable Unit). The computing environment 
and the connector that the component subscribed can 
observe and use the information in OOU. 

Definition 1. The CU of an atomic component is an 
RTS (Reactive Transition System), CU = 

( )0, , , ,s S E V ∆ . 

S is a set of states in each RTS. � is a set of events which 
comprises three kinds of events: Output events �� , Input 
events ��, and hidden events ��. �� and ��  are considered 
as a set of observable events ����  which can be 
distinguished by "?" and "!" respectively. Each event has its 
corresponding data, which are presented by 	. Δ is a set of 
transitions from one state to another. The transitions are 
labeled events and their corresponding data regardless of the 
kind of event. If the transition is admissible, then the control 
will be passed to the next state. An atomic component in 
detail is presented in Fig. 1. 

 

 
Fig. 1 Components with details in PUTRACOM

A. Composition of Atomic Components 

To compose components, the proposed model is enriched 
by connectors. Connectors are composition operators to 

compose and control the communication among components. 
In this section, it has expressed the meaning of these 
composition operators mathematically using CSP. 
Synchronization constraints, coordination, and 
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communication between components are defined in 
connectors. 

Connectors observe the OOUs of their subscribed 
components and manifest the output events of a component 
to input events of other components. The following 
definition specifies a connector [15]. 

Definition 2. Let Γ   be a connector to compose 
components; then the connector Γ   is a tuple 

( ), , , ,L T Sub GΓ = ∏ ,  

�  indicates the set lines that are used to connect a 
component to the connector, and through those lines, they 
can communicate with the components. As the proposed 
model support multiple types of synchronization,    is used 
to define the types of connectors. These types are 
����, �����, ���, ���, ��� ���; 

Each component that is connected to the connector 

through Lis called subscriber. { }0 1 2, , , , nSub b b b b= K is 

the set of the subscriber to a given connector. 
The set of interactions among the component's id 

indicated by { }0 1. , , , nG g g g∏ = K is a set of constraints. 

1) Type of Connectors: The types of connectors indicate 
the synchronization types are that enforced upon 
components and interaction. The connector’s types defined 
in PUTRACOM are elaborate in this section. 

• Sync connector: Two components ��  and ��  can be 
composed and coordinated synchronously by a ���� 
connector shows by �� !" . When an event occurs, if 
the corresponding #  is satisfied, all the components 
subscribed to the �� !" will change their state. In case 
of any component is not ready, the rest of them will be 
blocked.  

• Fig. 2 represents a ���� connector. 
 

 
 

Fig. 2 $%&' connector in PUTRACOM 

• async connector: In contrast to sync connector, an 
async connector may act independently. It means the 
concurrent behavior of components C1 and C2 is like 
running both in parallel, which has interleaving traces. 
Fig. 3 indicates an async connector. The following 
definition specifies sync [15]. 

 

 
Fig. 3 ($%&' connector in PUTRACOM 

• Other Connectors: In the case that there is a connector 
to choose occurring a specific event, it has been used 
conditional connectors. Another type is sequential 
connectors run components sequentially. The first 
component is waiting until the other is terminated. The 
last kind of connector is an iterative connector, which 
runs a component sequentially in infinite times. 

2) Interactions: Interactions are the communications 
between the components. All the interactions are under the 
control of the connectors, and no components can intervene. 
Depends on the type of each connector, it coordinates the 
events from the computing environment or other OOU of 
components. This coordination is totally based on the 
synchronization constraints. Synchronization constraints 
must be defined before in # . According to the types of 
connectors, the type of interactions may differ. 

3) Composition:  In the composition of two components, 
the precondition is encapsulating computation. It is because 
and the function call is forbidden in PUTRACOM. The 
following definition defines the composition of components 
in PUTRACOM.  

Let two ��  and ��  which is defined by RTSs. Then, a 
composition of these two components could be defined 

( )( )
1 20, , , ,c cN r R E V⊗= ∆

. 

) indicates a set of components (or RTSs) includes two 
components �� and ��. 

� indicates a set of Hidden and Observable events of both 
components �� and ��. The Hidden Events are: 

{ }{ }1 2
| , , 1,2 ;

i j

H O I
C C C CE e e E e E i j⊗ = ∈ ∧ ∈ ∀ ∈  

Observable events are 
1 2 1 2 1 2

obs I O
C C C C C CE E E⊗ ⊗ ⊗= ∪ where

( ) ( )
1 2 1 2 1 2 1 2

/  an ;I I I H O O O
C C C C C C C CE E E E E E E⊗ ⊗= ∪ = ∪  

The set of variables and transition in the composition of 
two components are 

{ }1 2, , ,  and nV v v v R R= ∆ ⊆ ×∏×K  respectively. 

III.  RESULT AND DISCUSSION 

In this section, an example has been defined [11] and it is 
used to demonstrate a control system for a refrigerator. The 
refrigerator includes a cooler, a temperature sensor, and a 
switch component to turn on and off the cooler. A 
component has been specified for controlling the cooler and 
temperature sensor [11]. However, this study does not use 
such components because our connectors are able to control 
and coordinate all these components accordingly. The cooler 
is a component for cooling in a refrigerator. When the switch 
component is on, the input event �����?  in the cooling 
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component occurs and ��  triggers idle state to the cooling 
state. When the temperature’s variable ��*+ (which control 
by the sensor component) drops below the threshold ,, then 
the event ���+? occurs and firing the transition �- tigers the 
cooler component from ���.��/ state to ��.�. The general 
behavior of the cooler component is: 

{ }
? ?

' ?, ?

,

e

start stop

cooler cooler e start stop

idle Coolling coolling idle

→  = 

→ →
 

 
A sensor will check the temperature of the refrigerator as 

in Figure 4 below. The sensor component has four states 
observing, decreasing, increasing, and normal. When ��*+ 
drops below the low threshold , , then event ℎ�/ℎ?  will 
happen and transition �1 triggers to ���������/ state. Then 
��*+  will slowly increase until the threshold 2  is met.  
Currently, the cooler component remains in ��.�  state. If 
��*+  rises and exceeds the high threshold 2 , the 
���������/! the event will occur, and the cooler component 
starts to cool again. 

Whenever the event 344?  from the �5���ℎ  component 
occurs, �6 triggers a cooling state to idle. In the refrigerator 

controller, switch and cooler run asynchronously. They can 
react whenever admissible events occur. To compose the 
two components, an ����� connector is used. Let ��*� is a 
composition of switch and cooler, �5���ℎ ||| ���.�� , then 
the behavior of them is defined below: 

 
'

1 1 { ! ?

                                 ={ , } ! ?

                                 ={ , }}

async
Com Com start start

on cooling stop stop

off idle

Γ→ =

∪  

 
��*�  is the synchronously composed with temperature 

component. Let ��*� is the synchronouscomposition of 
��*�  and temperature, ��*� || ��*+����8�� , then the 
behavior of ��*� is specified bellow: 
{start! & start? & high? = {on, idle, decreasing} 
∪ stop! & stop? = {off,idle} 
∪ start! & start? & low? = {on, idle, increasing} 
∪ start! & start? & start! = {on, cooling, observing} 
∪ stop! & stop? & {high?, low?, start!} = {on, idle}} 

 

 

 
Fig. 4 A refrigerator controller by PUTRACOM 
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Fig. 5 An example of PUTRACOM modeled in CPN tools

 
The cooling system of a refrigerator is modeled based on 

PUTRACOM component model in Colored Petri Net (CPN) 
tools, Fig. 5. CPN Tools is a tool for modeling systems and 
exhibiting multiple kinds of synchronization. It is based on 
the Petri net to simulate concurrent or multiple processes 
systems [9]. It provides a platform to analyze the 
PUTRACOM and prove its applicability. 

The CPN version of PUTRACOM indicates that 
encapsulating computational units to be decoupled from the 
other components, utilizing OOU to leave CU totally 
encapsulated, having exogenous connectors with multiple 
kinds of synchronization, and finally fully encapsulate 
control are applicable. In other words, the underlying 
consents of PUTRACOM are applicable. 

IV.  CONCLUSION 

A new component model, named PUTRACOM, is 
presented in this paper. PUTRACOM supports to develop 
concurrent software systems with discrete-event. 
PUTRACOM defines components by two important features: 
the Observer/Observable unit and a computation unit. These 
two features allow a component to have fixed behavior 
without any dependency on other components. The 
components can be composed using a well-defined set of 
connectors. 

Each component is enriched by a novel unit called OOU 
for notifying the connectors then the components are free 
from any direct message passing or invocation. Moreover, 
there are no multiple ports or method calls. Therefore, the 
complexity will be reduced. Exogenous connectors can 
handle coordination all over the system without evolving 

components. Its applicability by utilizing an example and 
model it in the CPN tools is demonstrated. 

PUTRACOM has been formally defined based on the 
well-defined and sound methods like CSP and RTSs. We 
intend to develop a prototype tool for it. Moreover, 
PUTRACOM has the potential to construct incrementally. 
Constructing systems bit by bit reduce the complexity of the 
system. This is the future work that aimed to be investigated. 
It may also help in the verification of component-based 
systems [16]. 
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