

Vol.10 (2020) No. 4

ISSN: 2088-5334

PUTRACOM: A Formalism of a Novel Component Model
Faranak Nejatia,*, Ng Keng Yapa, Abdul Azim Abd Ghania, Azmi Jaffara

aFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
E-mail: *faranak.nejati@student.upm.edu.my

Abstract— The composition mechanisms and interactions of current component models are mostly base on port or function calls from
other components. However, in both styles, the number of interactions that depend on the number of ports and method calls may
increase dramatically. Hence, to avoid such complexity of composing components and coordination of the interaction among them, a
component model and policy to provide a separation between the components and coordinating is needed. This study presents a
formal specification of a novel component model for discrete-event and non-blocking component-based systems called PUTRACOM.
A new component model, named PUTRACOM is presented in this paper. PUTRACOM supports to develop concurrent software
systems with discrete-event. PUTRACOM defines components by two essential features; they are the Observer/Observable unit and a
computation unit. These two features allow a component to have fixed behavior without any dependency on other components. The
components can be composed using a well-defined set of connectors. PUTRACOM has been formally defined based on the well-
defined and sound methods like CSP and RTSs. PUTRACOM provides a way to construct components and coordinate them with a
well-founded mechanism. The model defines a set of exogenous connectors and an observer/observable unit to encapsulate
components and coordination. In order to illustrate the way of component composition in the proposed model, an example of the
control system of a refrigerator is used. Moreover, to evaluate its applicability, the example has been implemented in Colored Petri
Net (CPN) tools.

Keywords— component-based software development; component model; encapsulation; computation; exogenous connectors.

I. INTRODUCTION

Component-based software development (CBSD) is a
new paradigm to tame the complexity of constructing large
software systems. However, constructing the software
components, synthesizing them together, and coordinating
them are challenging tasks. It is because of complex
composition styles conferred in the current component
models. Their way of composing component and interaction
among them are mostly based on port calling a function from
other components (for example, ADLs). The complexity
becomes worse when computation and coordination are not
separated, and some couplings exist between the components
in the concurrent component models. To address this
problem, a component model that supports the reliable
separation of computation and coordination is required.

In this paper, a concurrent component model called
PUTRACOM that can mitigate the complexity of the
component-based model by encapsulating computation and
coordination among composed components is presented
formally. The first contribution is the concept of the
Observer/Observable Unit (OOU) in the components to
encapsulate computations. OOU notifies the connectors, then
the components are free from any direct message passing or
invocation, which leads to encapsulation. Encapsulation

prevents direct intervention among the components.
Therefore, coupling in the model will be eliminated. OOU
also avoids having multiple ports like what is presented in
the typical component models to reduce complexity.

Second, a new set of exogenous connectors to encapsulate
coordination is proposed. The considerable characteristic of
our exogenous connectors is that the components never be
engaged in control. In this way, computation and
coordination will be separated. The novelty of the new
exogenous connectors is the observation of OOUs by their
subscribed components. By observing OOUs, connectors
handle coordination all over the system without involving
the computation unit of components.

Third, our connectors compose components
synchronously, asynchronously, sequentially, conditionally,
and iteratively. Finally, the behavior of the components and
connectors are defined formally. This research defines
components using Reactive Transition systems (RTS) [1],
[2]. The composition and interactions between components
are expressed in Communication Sequential Processes (CSP)
[3], [4]. The proposed model has been evaluated to prove its
applicability to the real-life systems in Colored Petri Net
Tools (CPN) [5].

PUTRACOM is based on exogenous connectors.
Exogenous connectors control the interaction between

1444

components outside of the components. The proposed
component model in this study is unlike ADL likes
component model [6]–[9]. ProCom also is used in real-life
systems [10]. One component model with this kind of
connectors is X-MAN [11]–[13]. X-MAN component model
has some similar aspects to the proposed model in this work.
It encapsulates computation and control and let the
components to be decoupled. X-MAN is an exogenous based
component model. Components never call methods or
functions in other components. Connectors construct
composed components. Connectors in X-MAN encapsulates
control between components and let the component and
composite component to be decoupled [14]. However, their
connectors encapsulate only sequential controls. The
underlying philosophy behind X-MAN is a proper method
for our goal. This study enriched X-MAN by extending this
model to support concurrency.

To specify the model formally, it is vital to choose a
proper formalism which can define all the essential
properties of components, connectors, composition
mechanism, and interactions among them. Communication
Sequential Processes (CSP) [3] is a well-defined parallel
computation formalism to define processes running in
parallel. The processes communicate using multiple
operators such as sequential composition, broadcasting,
parallel composition, iteration, and conditional composition.
The connectors in PUTRACOM are also defined based on
these operators. However, the message passing
communication model in CSP is not supported in
PUTRACOM. Processes in CSP are defined by Label
Transition Systems (LTSs). LTSs express the behavior of
processes and semantic of all composition operators.
However, in LTS, input, output, and internal events are not

distinguished explicitly. In this paper, an improved kind of
LTS called Reactive Transition Systems (RTSs) had been
adopted [1]. RTS models the internal behavior of
components and separates it from input and output behavior.

II. MATERIAL AND METHOD

This section aims at defining atomic components. All
components consist of a two different kinds of units called
CU and (OOU). As shown in Fig. 1, CU (Computation Unit)
encapsulates computation that it will never call other
components. Input/output events with their corresponding
data are manifested as a multiset in OOU
(Observer/Observable Unit). The computing environment
and the connector that the component subscribed can
observe and use the information in OOU.

Definition 1. The CU of an atomic component is an
RTS (Reactive Transition System), CU =

()0, , , ,s S E V ∆ .

S is a set of states in each RTS. � is a set of events which
comprises three kinds of events: Output events �� , Input
events ��, and hidden events ��. �� and �� are considered
as a set of observable events ���� which can be
distinguished by "?" and "!" respectively. Each event has its
corresponding data, which are presented by 	. Δ is a set of
transitions from one state to another. The transitions are
labeled events and their corresponding data regardless of the
kind of event. If the transition is admissible, then the control
will be passed to the next state. An atomic component in
detail is presented in Fig. 1.

Fig. 1 Components with details in PUTRACOM

A. Composition of Atomic Components

To compose components, the proposed model is enriched
by connectors. Connectors are composition operators to

compose and control the communication among components.
In this section, it has expressed the meaning of these
composition operators mathematically using CSP.
Synchronization constraints, coordination, and

1445

communication between components are defined in
connectors.

Connectors observe the OOUs of their subscribed
components and manifest the output events of a component
to input events of other components. The following
definition specifies a connector [15].

Definition 2. Let Γ be a connector to compose
components; then the connector Γ is a tuple

(), , , ,L T Sub GΓ = ∏ ,

� indicates the set lines that are used to connect a
component to the connector, and through those lines, they
can communicate with the components. As the proposed
model support multiple types of synchronization, is used
to define the types of connectors. These types are
����, �����, ���, ���, ��� ���;

Each component that is connected to the connector

through Lis called subscriber. { }0 1 2, , , , nSub b b b b= K is

the set of the subscriber to a given connector.
The set of interactions among the component's id

indicated by { }0 1. , , , nG g g g∏ = K is a set of constraints.

1) Type of Connectors: The types of connectors indicate
the synchronization types are that enforced upon
components and interaction. The connector’s types defined
in PUTRACOM are elaborate in this section.

• Sync connector: Two components �� and �� can be
composed and coordinated synchronously by a ����
connector shows by �� !" . When an event occurs, if
the corresponding # is satisfied, all the components
subscribed to the �� !" will change their state. In case
of any component is not ready, the rest of them will be
blocked.

• Fig. 2 represents a ���� connector.

Fig. 2 $%&' connector in PUTRACOM

• async connector: In contrast to sync connector, an
async connector may act independently. It means the
concurrent behavior of components C1 and C2 is like
running both in parallel, which has interleaving traces.
Fig. 3 indicates an async connector. The following
definition specifies sync [15].

Fig. 3 ($%&' connector in PUTRACOM

• Other Connectors: In the case that there is a connector
to choose occurring a specific event, it has been used
conditional connectors. Another type is sequential
connectors run components sequentially. The first
component is waiting until the other is terminated. The
last kind of connector is an iterative connector, which
runs a component sequentially in infinite times.

2) Interactions: Interactions are the communications
between the components. All the interactions are under the
control of the connectors, and no components can intervene.
Depends on the type of each connector, it coordinates the
events from the computing environment or other OOU of
components. This coordination is totally based on the
synchronization constraints. Synchronization constraints
must be defined before in # . According to the types of
connectors, the type of interactions may differ.

3) Composition: In the composition of two components,
the precondition is encapsulating computation. It is because
and the function call is forbidden in PUTRACOM. The
following definition defines the composition of components
in PUTRACOM.

Let two �� and �� which is defined by RTSs. Then, a
composition of these two components could be defined

()()
1 20, , , ,c cN r R E V⊗= ∆

.

) indicates a set of components (or RTSs) includes two
components �� and ��.

� indicates a set of Hidden and Observable events of both
components �� and ��. The Hidden Events are:

{ }{ }1 2
| , , 1,2 ;

i j

H O I
C C C CE e e E e E i j⊗ = ∈ ∧ ∈ ∀ ∈

Observable events are
1 2 1 2 1 2

obs I O
C C C C C CE E E⊗ ⊗ ⊗= ∪ where

() ()
1 2 1 2 1 2 1 2

/ an ;I I I H O O O
C C C C C C C CE E E E E E E⊗ ⊗= ∪ = ∪

The set of variables and transition in the composition of
two components are

{ }1 2, , , and nV v v v R R= ∆ ⊆ ×∏×K respectively.

III. RESULT AND DISCUSSION

In this section, an example has been defined [11] and it is
used to demonstrate a control system for a refrigerator. The
refrigerator includes a cooler, a temperature sensor, and a
switch component to turn on and off the cooler. A
component has been specified for controlling the cooler and
temperature sensor [11]. However, this study does not use
such components because our connectors are able to control
and coordinate all these components accordingly. The cooler
is a component for cooling in a refrigerator. When the switch
component is on, the input event �����? in the cooling

1446

component occurs and �� triggers idle state to the cooling
state. When the temperature’s variable ��*+ (which control
by the sensor component) drops below the threshold ,, then
the event ���+? occurs and firing the transition �- tigers the
cooler component from ���.��/ state to ��.�. The general
behavior of the cooler component is:

{ }
? ?

' ?, ?

,

e

start stop

cooler cooler e start stop

idle Coolling coolling idle

→ =

→ →

A sensor will check the temperature of the refrigerator as

in Figure 4 below. The sensor component has four states
observing, decreasing, increasing, and normal. When ��*+
drops below the low threshold , , then event ℎ�/ℎ? will
happen and transition �1 triggers to ���������/ state. Then
��*+ will slowly increase until the threshold 2 is met.
Currently, the cooler component remains in ��.� state. If
��*+ rises and exceeds the high threshold 2 , the
���������/! the event will occur, and the cooler component
starts to cool again.

Whenever the event 344? from the �5���ℎ component
occurs, �6 triggers a cooling state to idle. In the refrigerator

controller, switch and cooler run asynchronously. They can
react whenever admissible events occur. To compose the
two components, an ����� connector is used. Let ��*� is a
composition of switch and cooler, �5���ℎ ||| ���.�� , then
the behavior of them is defined below:

'

1 1 { ! ?

 ={ , } ! ?

 ={ , }}

async
Com Com start start

on cooling stop stop

off idle

Γ→ =

∪

��*� is the synchronously composed with temperature

component. Let ��*� is the synchronouscomposition of
��*� and temperature, ��*� || ��*+����8�� , then the
behavior of ��*� is specified bellow:
{start! & start? & high? = {on, idle, decreasing}
∪ stop! & stop? = {off,idle}
∪ start! & start? & low? = {on, idle, increasing}
∪ start! & start? & start! = {on, cooling, observing}
∪ stop! & stop? & {high?, low?, start!} = {on, idle}}

Fig. 4 A refrigerator controller by PUTRACOM

1447

Fig. 5 An example of PUTRACOM modeled in CPN tools

The cooling system of a refrigerator is modeled based on

PUTRACOM component model in Colored Petri Net (CPN)
tools, Fig. 5. CPN Tools is a tool for modeling systems and
exhibiting multiple kinds of synchronization. It is based on
the Petri net to simulate concurrent or multiple processes
systems [9]. It provides a platform to analyze the
PUTRACOM and prove its applicability.

The CPN version of PUTRACOM indicates that
encapsulating computational units to be decoupled from the
other components, utilizing OOU to leave CU totally
encapsulated, having exogenous connectors with multiple
kinds of synchronization, and finally fully encapsulate
control are applicable. In other words, the underlying
consents of PUTRACOM are applicable.

IV. CONCLUSION

A new component model, named PUTRACOM, is
presented in this paper. PUTRACOM supports to develop
concurrent software systems with discrete-event.
PUTRACOM defines components by two important features:
the Observer/Observable unit and a computation unit. These
two features allow a component to have fixed behavior
without any dependency on other components. The
components can be composed using a well-defined set of
connectors.

Each component is enriched by a novel unit called OOU
for notifying the connectors then the components are free
from any direct message passing or invocation. Moreover,
there are no multiple ports or method calls. Therefore, the
complexity will be reduced. Exogenous connectors can
handle coordination all over the system without evolving

components. Its applicability by utilizing an example and
model it in the CPN tools is demonstrated.

PUTRACOM has been formally defined based on the
well-defined and sound methods like CSP and RTSs. We
intend to develop a prototype tool for it. Moreover,
PUTRACOM has the potential to construct incrementally.
Constructing systems bit by bit reduce the complexity of the
system. This is the future work that aimed to be investigated.
It may also help in the verification of component-based
systems [16].

ACKNOWLEDGMENT

The completion of this project could not have been
accomplished without the support of the Ministry of Higher
Education Malaysia and Universiti Putra Malaysia for their
generous grant “Project: UPM/700-2/1/FRGS/08-01-15-
1719FR”.

REFERENCES
[1] Y. Jin, “Compositional verification of component-based

heterogeneous systems,” University of Adelaide, 2004.
[2] B. Igried and A. Setzer, "Programming with monadic CSP-style

processes in dependent type theory," Proceedings of the 1st
International Workshop on Type-Driven Development. ACM, 2016.

[3] A. W. Roscoe, S. D. Hoare, and C. A. R. Hoare, A theory of
communicating sequential processes. Oxford University Computing
Laboratory, Programming Research Group, 1981.

[4] B. Igried and A. Setzer, "Programming with monadic CSP-style
processes in dependent type theory," Proceedings of the 1st
International Workshop on Type-Driven Development. ACM, 2016.

[5] K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use, Vol. 1. Springer Science & Business Media, 2013.

[6] J. El Hachem, et al. "Model driven software security architecture of
systems-of-systems." 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2016.

1448

[7] F. Oquendo, J. Leite and T. Batista, "Specifying architecture behavior
with SysADL." 2016 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA). IEEE, 2016.

[8] A. Butting, et al. "Systematic language extension mechanisms for the
MontiArc architecture description language." European Conference
on Modelling Foundations and Applications. Springer, Cham, 2017.

[9] M. D. Sanctis, et al. "A model-driven approach to catch performance
antipatterns in ADL specifications." Information and Software
Technology 83 (2017).

[10] X. Jiang, et al. "ProCom: designing a mobile and wearable system to
support proximity awareness for people with autism," Proceedings of
the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct. ACM, 2016.

[11] K. K. Lau, K. Ng, T. Rana, and C. M. Tran, “Incremental
construction of component-based systems,” in Proceedings of the

15th ACM SIGSOFT symposium on Component Based Software
Engineering, 2012.

[12] K. Lau, C. M. T. X-MAN tool set, 2016.
[13] K. Lau. An Introduction to Component-based Software Development.

Vol. 3., 2017.
[14] K. Lau, A. Nordin and K. Ng, “Extracting elements of component-

based systems from natural language requirements,” in 37th
EUROMICRO Conference on Software Engineering and Advanced
Applications, 2011.

[15] F. Nejati, A. A. A. Ghani, N. K. Yap, and A. Jafaar, “PUTRACOM:
A Concurrent Component Model With Exogenous Connectors,”
IEEE Access, vol. 6, pp. 15446–15456, 2018.

[16] F. Nejati, A. A. A. Ghani, N. K. Yap, and A. Jaafar, “Handling state
space explosion in verification of component-based systems: A
review,” arXiv Prepr. arXiv1709.10379, Jul. 2017.

1449

