
Vol.11 (2021) No. 1

ISSN: 2088-5334

Test Case Prioritization Approach for Sequence of Events Using

Complexity Factor

Emyreema Ja’afara,*, Sa’adah Hassana, Salmi Baharoma, Johanna Ahmada
aFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Corresponding author: *emy.jaafar@yahoo.com

Abstract—Test case prioritization (TCP) is a method to prioritize and schedule test cases. Some approaches have been introduced to

minimize the time, cost, and effort for testing the software based on the test cases that are higher priority. Since the more complex the

software program, the more intensive the test should be carried out. Thus, complexity is one of the factors that affect the effectiveness

of the test case prioritization. However, the existing approaches for measuring complexity have some limitations. This is due to

inaccuracy in finding the weightage value for complexity as the value is useful to determine the test case prioritization. Consequently,

a complexity metric measurement is needed to determine the weightage value. Hence, this paper presents work on TCP using

complexity factors to enhance the accuracy in prioritizing the test cases for event sequences. This work uses Branch Coverage

Expectation (BCE) for complexity measurement, in which BCE has been proven its usefulness empirically in the previous research.

The event-weightage value based on the complexity is then assigned and used to prioritize the test cases while the Average Percentage

of Fault Detected (APFD) metric is used to evaluate the proposed approach. A tool has been developed to ease the process as well as to

facilitate the evaluation purposes. The results show the need to combine the complexity factor with other factors to improve the

proposed TCP's effectiveness.

Keywords— Test case prioritization; software testing; complexity measurement; branch coverage expectation; sequence of events.

Manuscript received 24 Oct. 2019; revised 6 Nov. 2020; accepted 17 Dec. 2020. Date of publication 28 Feb. 2021.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

While the technologies are evolving, the number of

software users is expanding; consequently, it increases the

demand for advancing software functionalities. As a result,

the software becomes more complicated. Software testing is

a critical phase in the software development cycle.

Particularly for complex software. Organizations must carry

out software testing before delivering the product to the

users. The objective of software testing is to validate and

verify the software product and discover as many errors as

possible. However, the developers are not taken seriously

due to significant resources in terms of cost, time, and effort;
need to be consumed for testing the software. Therefore, test

case prioritization (TCP) is one of the research areas aiming

to reduce the effort, time, and cost of software testing.

Test case prioritization techniques schedule test cases so

that the test cases that are higher in priority are executed

earlier than the test cases that are a lesser priority. TCP

prioritizes the test cases to increase a test suite’s fault

detection rate [1]. There has been an increasing amount of

work on TCP that shows the researchers' interest in TCP

[2]–[4]. However, further work is still needed to improve

TCP's effectiveness so that it can be executed faster and

cost-efficient. Some factors affect the TCP technique's
effectiveness, such as fault, redundancy, complexity,

frequency, requirements, time, distance, cost, and

permutation.

Generally, a complex structure of a system is always a

primary challenge in software development. However, the

more complex the software, the more significant number of

defects will be found. This is because the complexity factor

always one of the essential factors in determining the cost,

time, and effort in software development. Numerous

complexity metrics have been proposed and introduced in

previous research in the different software development

areas. The typical complexity metric measurement that has
been used by the industries and researchers [5], [6] are Mc

Cabe’s Cyclomatic Complexity, Halstead metric, Lines of

Codes (LOC), Control Flow Graph (CFG), and Function

Point (FP).

A study to determine the best metric for measuring event

sequences' complexity has been conducted [7]. The study

400

has shown that Unique Complexity Metric (UCM) is one of

the best metrics in measuring event sequences' complexity

compared to others. However, UCM still has some

restrictions where UCM does not assign the upper and lower

bound complexity values. In which, lack of this will lead to

inaccuracy in finding the weightage value for complexity.

Since this value will be used to determine the test case

prioritization, it must be as accurate as possible. Therefore, a

different complexity metric measurement is proposed to

determine the weightage value. In this paper, the work

focusing on determining the test case prioritization technique
in event sequences, and the factor used to prioritize the test

case is the complexity factor. This paper also presents TCP

work using complexity factor that aims to get better

accuracy in prioritizing the test cases for event sequence.

A. Related Work

To date, various approaches and techniques of TCP have

been developed and introduced. For example, a system-level

TCP method was proposed from the required specification
[8]. It is mentioned that this method can reduce cost,

increase fault detection, thus improves user satisfaction. This

method prioritizes the test cases based on six factors like

work by Abraham et al. [9]. Although the factors used are

the same, but the proposed method is different. The

algorithm of the proposed TCP method is as shown in Fig. 1.

Fig. 1 Algorithm for TCP method [8]

Chaurasia et al. [10] suggest five metrics to be used to
determine the order of the test cases in the new clustering-

based approach. The five metrics are code coverage, test

case failure rate, fault detection ratio, execution time, and

code complexity metric. The metrics and related formulas

are summarized in Table 1.

Table 1 shows that as for the execution time, it is taken

while performing the prioritization. Based on the research

done by Huang et al. [11], they found that the TCP approach

of “fixed-strengths prioritization” does not consider multiple

strengths. Therefore, Huang et al. [11] proposed a new

technique called “aggregate-strength prioritization,” which

overcomes the technique's limitation. Previous work by

Huang et al. [6] proposed TCP method named as weight-

based GUI test-cases prioritization method (WGTCP) in

which weightage value from control flow graph (CFG) is

used as a factor. This method can solve the problem of

executing all GUI test cases that consume a long time to

identify test cases with higher fault. The weighted values

were ordered based on the value from high to low or
accustomed value.

TABLE I

METRIC AND RELATED FORMULA FOR CLUSTERING-BASED TCP

TECHNIQUE [10]

Metric Formula

Code Coverage
Metric

Statements covered by a test case
Total number of covered statements

Test-Case Failure
Rate

The number of the items test case has failed
No. of times it has been executed

Fault Detection
Ratio

Number of detected faults by a test case
Total number of faults

Code Complexity
Metric

The complexity of a test case is assigned as
the average of the complexities of classes
covered by that test case

In 2016, a weighted TCP technique called Modified

Particle Swarm Optimization (MPSO) was introduced to

determine the most disclose fault found in the lowest

execution time [9]. They proposed this technique with six

prioritization factors which are, implementation complexity

(IC), execution time (ET), requirement complexity (RC),

fault impact in requirement (FI), completeness (CT), and

traceability complexity (TC). The weightage values in IC

used in their proposed technique is given by the developer,

in which it ranges from value 1 to 10. This value range

indicates that the more value is given, the more complex it

will be implemented. However, the developer's value might
be subjective and not consistent if different developer

allocates the values. This is because humans might have

different perspectives and opinions regarding the degree of

complexity in executing the requirements.

TABLE II

SEVERITY VALUE [12]

Severity Rank Severity Code Severity Weighted

Value

Very High VHS 32

High HS 16

Medium MS 08

Less LS 04

Least VLS 02

Nayak et al. [12] introduced a new prioritization technique,

in which they proposed two factors, which are fault rate (FR)

and the severity value of the fault (SVF). This technique
aims to prioritize those test cases that expand its viability for

identifying faults. The fault rate (FR) is characterized as the

most extreme sum of faults situated by a TC for each unit

time or the total implementation time. For TC, TCj, FRj

have been ascertained utilizing all number of faults, Nj,

401

situated by TCj, and the aggregate implementation time,

time, required by TCj to reveal those faults. It can be

communicated in the equation form as follow.

FRj = Nj / Timej (1)

While, for severity value is weighted as in Table 2.

Fig. 2 illustrates their proposed approach in the form of a

flow chart.

Fig. 2 Flow chart of the proposed approach (Nayak et al. [12])

Some studies Hettiarachchi et al. [13] and Marchetto et al.

[14] used the complexity factor to prioritize requirements or

test cases where they argued that complexity is an essential

factor to determine the priority of the requirements or test

cases. They used the Mc Cabe Complexity Metric to

measure the complexity. Hettiarachchi et al. [13] used Mc

Cabe to measure requirements complexity values of the

system’s codes using Eclipse IDE tool. Besides the
complexity factor, Hettiarachchi et al. [13] also combined

requirements size (RS), requirements modification status

(RMS), and potential security threats (PST) in their proposed

approach. Hence, an improved risk-based TCP was proposed

to thoroughly evaluate requirements risks with a fuzzy

expert system [13]. Whereas, Marchetto et al. [14] combined

it with the size factor. Marchetto et al. [14] also argued that

the previous study on the TCP approach focuses only on the

single objective, either to minimize the cost or to detect the

fault earlier. Therefore, they [14] proposed an approach to

fulfill the multi objectives technique for prioritizing the test
cases.

A recent study by Kumar and Chauhan, [15] mentioned

four factors that affect the TCP approach; fault detection

(C1), feedback (C2), reliability (C3), and cost (C4). This

study also suggests four alternatives TCP technique as below:

 Control structure weighted test case prioritization (A1)

 Total Statement Coverage Prioritization (A2)

 Random prioritization (A3)

 Additional statement coverage prioritization (A4)

However, this study's limitation is the alternative TCP

technique, and the criteria only consist of four choices while

there are much other techniques and criteria that can be

included in this study.

Noor and Hemmati [16] proposed an enhanced similarity-

based approach using improved quality metrics. Those

metrics are Basic Counting (BC), Hamming Distance (HD),

and Edit Distance (ED). These metrics or measurements are

used to prioritize the test cases in their proposed approach.

Whereas, Wang, Zhao, and Ding [17] developed a TCP

approach based on severity fault value that will elevate test
cases' priority. This fault severity is divided into four

categories or types: fatal fault, serious fault, general fault,

and minor fault. This severity fault value becomes the

weightage value where each category was assigned with a

quantitative value that consists of fatal fault (2^3), serious

fault (2^2), general fault (2^1) and minor fault (2^0). This

approach is proposed to overcome the test cases with the

same maximum coverage rate since the random selection

will affect the priority of the test cases.

Based on the studies, most of the research aims to improve

the fault's detecting rate and optimize the testing phase's cost
and time. This is also the main objective in the software

industries, hence, become the main reason why the research

on TCP is exceeding. Thus, most of the previous research

efforts combined two or more factors in determining the test

cases' priority. Besides the fault factor, complexity is also

one of the important factors focused on by the researchers.

The complexity can be divided into two; the developer's

complexity value and the value that came from the code by

using the complexity metric such as Mc Cabe’s Complexity

and Control Flow Graph. We also understand that

complexity is one of the important factors because the more
complex the program is, the more intensive test needs to be

carried out.

Branch Coverage Expectation (BCE) is a complexity

measure introduced by Ferrer et al. in 2013 [18]. Their

research has evaluated BCE with the existing complexity

measures and have theoretically proved that BCE is a

promising way of measuring complexity. Therefore, we

applied BCE complexity measure in our proposed approach

to measure the complexity of the sequence of events

program for prioritizing the test cases.

II. MATERIAL AND METHOD

The proposed approach focuses on developing a TCP

using the complexity factor for sequences of events. A TCP

using complexity factor solely is proposed as there is no

study previously done on using only the complexity factor.

In this approach, the complexity factor value is based on the

weightage value of prioritizing the test cases. It highlights

the activity for prioritizing the test cases of event sequences

using the complexity factor where the weightage value is
assigned to each event in the program.

 Provide input files: the codes (computer program), the

test suite, and events.

 Calculate all the related BCE complexity

measurements. It consists of a transition matrix, P,

Stationary Probabilities, π, frequency of appearance

E(BBi), and the BCE value. BCE calculation and its

properties are based on Ferrer et al. [18], [19].

402

 Assigned the weightage value for all the events.

Calculation of TC weightage. In this step, the

weightage of all the TCs in the test suite are sum up.

The summation is based on the weightage value for

each event that been assigned previously.

 Prioritize the TCs – the prioritization is based on the

weightage values of the TCs. The TCs is ordered in

descending order from the most considerable

weightage value to the lowest weightage values.

Fig. 3 illustrates the proposed approach of implementation
BCE complexity measurement and TCP.

Fig. 3 Flow of the proposed approach

The sub-sections below present each step carried out in

the approach.

A. Calculation of Branch Coverage Expectation (BCE)

BCE measure is based on the Markov Chain Model by

Andrey Markov, a Russian Mathematician. Markov Chain is

mentioned as a stochastic model describing a sequence of

possible events in which the probability of each event

depends only on the state attained in the previous event. The

conditional probabilities of first-order Markov Chain P (Xt+1

= - j|Xt = i) = Pij(t) are called one-step transition

probabilities and the matrix P(t) = [Pij(t)] is the so-called
transition probability matrix. Two properties of the transition

probability matrices are:

 Pij ≥ 0, (2)

 Xnj=1 Pij = 1 (3)

Ferrer et al. [18] mentioned that if every state in a Markov

chain can be reached from every other state, then it is said

that the Markov chain is irreducible. For irreducible Markov

chains, having only positive-recurrent states, the probability

distribution of the states q(t) tends to a given probability

distribution p as the time tends to infinite. This probability

distribution p is called the stationary distribution and can be

computed by solving the following linear equations:

 π T P = π T, (4)

 π T 1 = 1 (5)

Markov model is built from Control Flow Graph (CFG)

where a state of Markov chain is the basic blocks (BB) of

the program. BB is a portion of the code that is executed

sequentially without any disruptions. The transition

probabilities of all branches are computed according to

logical expressions that appear in each condition. Once the

transitions probabilities completed, the stationary
probabilities, π, and the frequency of appearance E(BBi) are

computed as:

 E[BBi] = πi/π1 (6)

Where, π1 is the stationary probability of the entry basic

block, BB1.

The next step is where the expectation of traversing a
branch (i, j) is computed from the frequency of appearance

of the previous basic block and the probability to take the

concrete branch from the previous basic block as:

 E[BBi, BBj] = E[BBi] * Pij (7)

Then, Branch Coverage Expectation (BCE) is defined as

the average of E[BBi , BBj] with a value lower than 1/2. The

BCE is bounded in the interval (0, 1/2]. Formally, let A be

the set of edges with E [BBi , BBj] < 1/2:

 A = {(i, j)|E|[BBi , BBj] < 1/2 } (8)

BCE is defined as below:

 BCE = 1 /|A| X (i,j)∈A E[BBi , BBj]. (9)

B. Weightage Value Based on Complexity of the Events

The event weightage value method applied in this

approach is based on Huang, et al. [6] method called an

event-weightage assignment. This method applied in this

research based on the suitability of the proposed approach

using the BCE complexity measurement. The weightage

value given is based on the BCE complexity value for each

event. The bigger of BCE value, the bigger the weightage
value given to the event based on the rank.

C. Weightage Value for Test Case (TC)

After the weightage value is assigned on each event, each

TC's calculation is required to sum up the weightage value

for each TC. This value is important to prioritize the TC.

The summation of the weightage value is an example below:

Test Case: _.add (1). add (1). add (1). add (1). add (1). add

(1). front ()

Summation weight= (Event Weight 1 * No of Event 1) +

(Event Weight 2 * No of Event) +

(Event Weight 3 * No of Event 3)

= (3x6) + (1x1)

= 19

403

Then the TC will be prioritized accordingly based on the

summation of TC’s weightage value.

In this phase, the proposed approach is applied in a case

study of sequence of events program and validated and

evaluated using APFD metric. The experiment uses a case

study of the Circular Queue Program. A circular queue is

one of the sequences of an event program. Currently, we

only cover codes in Java programming language. The

program and test suite for this study are taken from a

previous research done by Baharom and Shukur [20]. The

experimental setup in brief as below:

Case Study: Circular Queue Java program

Test Suite: 79 test cases

Event: Add, Remove, Front (Display).

III. RESULTS AND DISCUSSION

A prototype tool was developed based on the proposed

approach. All the calculations and properties in the BCE
complexity measurement were calculated automatically to

ease the calculation process, except for the evaluation part

where the testing and calculation were using Junit. This tool

is limited to calculate the BCE measurement for Java

programs only. The tool was developed using Visual Basic

as a programming language and Microsoft Access as a

temporary database to keep the measurement values.

There are two inputs needed: Java program and test suite,

as shown in Fig. 4. The Java program consists of program

event sequences, while the test suite consists of multiple test

cases. There are four main modules: a module to compute

BCE value for each event, a module to give weightage for
each event, a module to compute weightage for each TC,

and a module to prioritized TC order.

Fig. 4 The input page

The user needs to insert two input files: the Java

programming file and the test suites file. The Java
programming files must be in the java extension and the test

suites in the .txt extension. Once the input files have been

selected, the user needs to choose the Java program's event

function. For example, if the user needs to choose Add,

Remove and Front events in the circular queue program. For

a bounded stack program, the user needs to select Push, Pop,

Top, and Depth events. This event selection is based on the

program that the tool needs to measure the BCE complexity.

Then, the user can click the CALCULATE button to

calculate all the measurements for the BCE complexity. It

consists of a transition matrix, P, Stationary Probabilities, π,

frequency of appearance E (BBi), and the BCE value.

The selected event is listed in the form of a dropdown list,

as shown in Fig. 5 for the ADD event and Fig. 6 for the
FRONT event. The tool will automatically calculate the

BCE complexity measurement and display all the

measurement that consists of stationary probabilities,

frequency of appearance, and the BCE complexity value for

each event. The value will be stored temporarily in the

database for display purposes.

Fig. 5 BCE complexity measurement for ADD event

Fig. 6 BCE complexity measurement for FRONT event

404

The weightage value is then assigned based on the BCE

complexity value that had been calculated. Fig. 7 shows the

event weightage. The weightage value range is between 1 to

many events selected. For example, three events function

selected for the circular queue, so the weightage value is the

range in between 1 to 3. Value 3 will be given to the highest

BCE, value 2 to the second-highest, and value 1 to the

lowest BCE. However, if there is the same value, the

weightage will be assigned accordingly.

As shown in Fig. 7, the BCE value of the event adds and

removes the same. So, the weightage values are given with
the value of 3, which is the maximum value. This shows that

both events have the same complexity, while the event front

has given less BCE value with the minimum weightage

value of 1.

Fig. 7 Event Assign-Weightage

Fig. 8 shows a sample of the weightage calculation for

each test case in the test suites that have been selected in the

input interface. This interface will be displayed after the

Calculate TC weightage button has been clicked. This

interface will display all the test cases in the test suites that

been input earlier. It will also calculate each test case's
weightage based on the event in the test cases and sum up all

the values. The example of the calculation is shown in the

previous section.

Fig. 8 Test Cases Weightage Calculation

Figure 9 above shows a sample of the orderly test cases.

The test cases were sorted and ordered based on the

weightage value of each TC. The order is called the

prioritized TC. The test cases are sorted in descending order

from most significant weightage value to lowest weightage

value.

Fig. 9 The Order of Test Cases Prioritization

From the result, the new prioritization order for 79 test cases

is as: TC65, TC66, TC67, TC68, TC69, TC70, TC71, TC10,

TC11, TC12, TC13, TC14, TC15, TC73, TC74, TC75,

TC76, TC77, TC78, TC79, TC9, TC16, TC17, TC18, TC19,

TC20, TC21, TC22, TC30, TC31, TC32, TC33, TC34,

TC35, TC36, TC44, TC45, TC46, TC47, TC48, TC49,

TC50, TC23, TC24, TC25, TC26, TC27, TC28, TC29,

TC37, TC38, TC39, TC40, TC41, TC42, TC43, TC51,

TC52, TC53, TC54, TC55, TC56, TC57, TC58, TC59,

TC60, TC61, TC62, TC63, TC64, TC72, TC1, TC2, TC3,

TC4, TC5, TC6, TC7, TC8.
Average Percentage of Fault Detection (APFD) is then

used to prove the BCE complexity measurement's

effectiveness. The average percentage of fault detected

(APFD) metric was introduced to measure the average rate

of fault detection per percentage of test suite execution [21].

Most of the previous researchers [22], [23] used the APFD

metric on determining the effectiveness of their proposed

techniques. Hence, the same metric is used to evaluate the

effectiveness of the proposed approach based on the

prioritized and non-prioritized test cases.

APFD values range from 0 to 100, where higher numbers

imply faster fault detection rates. As discussed earlier, the
test cases' prioritization is based on the weightage value of

the complexity measurement. APFD produces statistically

and shown a significant result. It is significant to software

testing's objectives, which is to detect a fault as quick as

possible. The formula to find the APFD value is as below:

APFD = 1- {(Tf1+Tf2+.... +Tfm)/mn} +(1/2n) (10)

Where:

T be a test suite containing n test cases

F be a set of m mutants revealed by T

n is a few test cases

m is the number of mutations detect fault

405

TFi be the first test case in ordering T’ of T, which

reveals fault i.

In order to calculate the APFD, a mutation must be

determined first. In recent years, numerous mutation tools

have been developed [24]. In this research, the Jester

Mutation Operators [25] was applied where the operators are

as shown in Table 3.

TABLE III
JESTER MUTATION OPERATOR [20]

No Mutation Operator

1 Change numerical constants. Mutate 0 to 1
2 Flip Boolean values. Mutate true to false and vice versa
3 Mutate if(condition) to if (true||condition)

4 Mutate if(condition) to if (false&&condition)
5 Mutate ++ to – and vice versa
6 Mutate! = to == and vice versa

There are 24 mutations found in the CQ program. These

mutations are injected into the original CQ Java program and

test suite using the JUnit in Eclipse. Each of the mutants is

tested in 79 test cases. The total testing for CQ program is

1896 tests. A fault matrix is built from this testing. Fig. 10

shows some parts of the fault matrix. The fault that was

detected is marked with ‘x.’

APFD value for Non-Prioritization Test Cases (NPTC) is

the benchmark for this work compared with the

prioritization TCs (PTC). The APFD value can be calculated

based on the complete fault matrix and the APFD formula.

From the fault matrix, there are 8 faults detected in the CQ

program, which are:

TF1 is in first TC = 1

TF2 is in ninth TC = 9

TF3 is in first TC = 1

TF4 is in first TC = 1

TF5 is in eight TC = 8

TF6 is in ninth TC = 9

TF7 is in fifty-one TC = 51
TF8 is in ninth TC = 9

The APFD value for NPTC

Fig. 10 Part of fault matrix

The APFD for Prioritized Test Cases (PTC) value is based

on the TC prioritized order in the implementation section.

The APFD is calculated as below:

TF1 is in first place = 65

TF2 is in ninth place = 11

TF3 is in first place = 65

TF4 is in first place = 65

TF5 is in eight places = 10

TF6 is in ninth place = 11
TF7 is in fifty-one place = 46

TF8 is in ninth place = 11

The APFD value for PTC

The proposed approach's effectiveness is evaluated by

comparing the APFD value of non-prioritization test cases

(NPTC) and prioritization test cases (PTC) for the CQ

program. The result is displayed in a graph form as in Fig.

11.

Fig. 11 Graph on Comparison APFD value for NPTC and PTC

The graph in Fig. 11 shows that the percentage of non-

prioritized test cases is higher than the prioritized test cases,

in which NPTC is 85.29% while PTC is 54.43%. NP value is

36.82% higher than P-value. This value shows that the
prioritized test cases are less effective than the non-

prioritized test cases. In PTC, the test cases are sorted and

prioritized based on the weightage value of the event's

complexity value. It can be concluded that if the test cases

consist of many events, the weightage value becomes higher

and more complex as compared to the test cases with fewer

events.

 = 1-0.4494+0.0063

 = 0.5443

APFD = 54.43%

 = 1-0.1408+0.0063

 = 0.8529
APFD = 85.29%

406

IV. CONCLUSION

This paper focuses on the test case prioritization-based

BCE complexity measure approach (TCP-BCE) for events.

An experiment using a case study (Circular Queue program)

is conducted to evaluate TCP-BCE's effectiveness. APFD

metric is used to calculate the effectiveness of NPTC and

TCP-BCE. Based on the result, it can be concluded that
TCP-BCE is less effective. This is due to the test cases that

are prioritized based on complexity weightage event order.

The more events involved in one test case, the more

complicated it will be, and the weightage value will be

higher. It is shown that using only a complexity factor as a

factor to prioritize the test cases is not suitable and not

comprehensive enough. Wherein the weightage is based on

the complexity of the codes. The more complex the codes,

the higher the test case's weightage value, and the value of

the APFD will be lower; regardless of any complexity

measure approach is implemented. It is recommended in the
future that this proposed approach can be enhanced by

including more factors to be combined with the complexity

factor. However, remain to use BCE, since BCE calculation

is proven to be a right measurement of complexity, and it

also can estimate the number of relevant test cases needed

for the program.

ACKNOWLEDGMENT

We are grateful to Universiti Putra Malaysia and the
Ministry of Education Malaysia through the Fundamental

Research Grant Scheme (FRGS) that funded this research.

REFERENCES

[1] G. Duggal and B. Suri, “Understanding Regression Testing

Techniques,” COIT, 2008, India.

[2] C. Catal and D. Mishra, “Test case prioritization: A systematic

mapping study,” Software Quality Journal, vol. 21(3), pp.445–478,

2013.

[3] H. Srikanth, M. Cashman, and M. B. Cohen, “Test case prioritization

of build acceptance tests for an enterprise cloud application: An

industrial case study,” J. Syst. Softw., vol. 119, pp. 122–135, 2016.

[4] X. Zhang, X. Xie, and T. Y. Chen, “Test case prioritization using

adaptive random sequence with category-partition-based distance,”

2016 IEEE Int. Conf. Softw. Qual. Reliab. Secur., 2016, p. 374–385.

[5] A. Marchetto, M. Islam, and W. Asghar, “A multi-objective

technique to prioritize test cases,” IEEE Transactions, 42(10), pp.

918–940, 2016.

[6] C. Y. Huang, J. R. Chang, and Y. H. Chang, “Design and analysis of

GUI test-case prioritization using weight-based methods,” Journal of

Systems and Software, vol. 83(4), pp.646–659, 2010.

[7] J. Ahmad and S. Baharom, “Comparision of software complexity

metrics in measuring the complexity of event sequences,”

Information Science and Applications, vol. 424, 2017.

[8] R. Krishnamoorthi and S. A. Sahaaya Arul Mary, “Factor oriented

requirement coverage-based system test case prioritization of new

and regression test cases,” Information and Software Technology, vol.

51(4), pp. 799–808, 2009.

[9] A. K. Joseph, G. Radhamani, and V. Kallimani, “Improving Test

Efficiency through Multiple Criteria Coverage based Test Case

Prioritization using Modified Heuristic Algorithm,” in International

Conference on Computer and Information Sciences, 2016, p. 430–

435.

[10] G. Chaurasia, S. Agarwal, and S. S. Gautam, “Clustering based novel

test case prioritization technique,” 2015 IEEE Students Conference

on Engineering and Systems (SCES), 2015, pp.1–5.

[11] R. Huang, J. Chen, D. Towey, A. T. S. Chan, and Y. Lu, “Aggregate-

strength interaction test suite prioritization,” Journal of Systems and

Software, 99, pp. 36–51, 2015.

[12] S. Nayak, C. Kumar, and S. Tripathi, “Effectiveness of prioritization

of test cases based on Faults,” 2016 3rd International Conference on

Recent Advances in Information Technology, 2016, p. 657–662.

[13] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case

prioritization using a fuzzy expert system,” Information and Software

Technology, vol. 69, pp. 1–15, 2016.

[14] A. Marchetto, M. M. Islam, W. Asghar, A. Susi, and G. Scanniello,

G, “A Multi-Objective Technique to Prioritize Test Cases,” IEEE

Transactions on Software Engineering, 42(10), pp. 918–940, 2016.

[15] K. H. Priyanka and N. Chauhan, “A Novel Approach for Selecting an

Effective Regression Testing Technique,” 2016 3rd International

Conference on Computing for Sustainable Global Development

(INDIACom), IEEE, 2016, p.1122–1125.

[16] T. B. Noor, and H. Hemmati, “A similarity-based approach for test

case prioritization using historical failure data,” 2015 IEEE 26th

International Symposium on Software Reliability Engineering

(ISSRE), 2015, p. 58–68.

[17] Y. Wang, X. Zhao, and X. Ding, “An effective test case prioritization

method based on fault severity,” in 2015 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS),

23-25 Sept. 2015, p.737-741.

[18] J. Ferrer, F. Chicano, and E. Alba, “Estimating software testing

complexity,” Information and Software Technology, vol. 55(12), pp.

2125–2139, 2013.

[19] J. Ferrer, “Optimization Techniques for Automated Software Test

Data Generation,” PhD Thesis, University of Malaga, 2016.

[20] S. Baharom and Z. Shukur, “The conceptual design of module

documentation-based testing tool,” Journal of Computer Science, vol.

4 (6), pp.454-462, 2008.

[21] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test

cases for regression testing,” in Proc. lnt'l. Symp. Softw. Testing and

Analysis, Aug. 2000, p. 102-112.

[22] A. Ansari, A. Khan, A. Khan, and K. Mukadam, “Optimized

regression test using test case prioritization,” Procedia Comput. Sci.,

vol. 79, pp. 152–160, 2016.

[23] P. Mahapatra and S. Tripathy, “Code based test case prioritization

using APFD metric,” Global J. of Mech., Eng. & Comp. Sciences,

vol.3(2), pp.3-5, 2013.

[24] Y. Jia and M. Harman, “An Analysis and Survey of the Development

of Mutation Testing,” IEEE Transactions on Software Engineering,

vol. 7, no. 2, pp.77-84, 2006.

[25] I. Moore, (2001). “Jester and Pester,” http://jester.sourceforge.net/

407

