

Vol.10 (2020) No. 1

ISSN: 2088-5334

Automated Test Cases and Test Data Generation for Dynamic
Structural Testing in Automatic Programming Assessment Using

MC/DC
Rohaida Romli#1, Shahadath Sarker#, Mazni Omar#, Musyrifah Mahmod#
School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, Kedah, Malaysia

E-mail: 1aida@uum.edu.my

Abstract— Automatic Programming Assessment (or APA) is known as a method to assist educators in executing automated
assessment and grading on students’ programming exercises and assignments. Having to execute dynamic testing in APA, providing
an adequate set of test data via a systematic process of test data generation is necessarily essential. Though researches respecting to
software testing have proposed various significant methods to realize automated test data generation, it occurs that recent studies of
APA rarely utilized these methods. Merely some of the limited studies appeared to resolve this circumstance, yet the focus on realizing
test set and test data covering more thorough dynamic-structural testing are still deficient. Thus, we propose a method that utilizes
MC/DC coverage criteria to support more thorough automated test data generation for dynamic-structural testing in APA (or is
called DyStruc-TDG). In this paper, we reveal the means of deriving and generating test cases and test data for the DyStruc-TDG
method and its verification concerning the reliability criteria (or called positive testing) of test data adequacy in programming
assessments. This method offers a significant impact on assisting educators dealing with introductory programming courses to derive
and generate test cases and test data via APA regardless of having knowledge of designing test cases mainly to execute structural
testing. As regards to this, it can effectively reduce the educators’ workload as the process of manual assessments is typically prone to
errors and promoting inconsistency in marking and grading.

Keywords— automatic programming assessment; test data generation; dynamic testing; structural coverage; MC/DC.

I. INTRODUCTION

Generally, courses related to programming are aimed at
developing student’s knowledge and skill in solving
programming problems and understanding related concepts
and principles. These courses are more practical when
students are given more programming exercises via
laboratory hands-on and assignments. Since the number of
students in a programming class are commonly large, it is
very tough to assess the programming exercises and
assignments manually by educators [1]. Manually assessing
these programming exercises most commonly requires much
effort and dealing with time-consuming tasks [2]. It also
directly promotes unintentional biases and different
standards of marking schemes [1] due to human deficiency.
Thus, an effort to realize automated means of assessing and
grading students’ programming exercises or is formally
known as Automatic Programming Assessment (or APA)
contributes a significant role to the related educators as well
as benefits students with instant feedback on their
programming solutions [3]. Concerning this matter, quite a
few tools that are so-called Automatic Programming

Assessment Systems or APAS were developed to
accommodate students and educators with APA. Among
them include Assyst [4], BOSS [5], TRAKLA2[6], PASS [7],
FEAT [8], a tool developed by University of Southampton [9]
and others. Unfortunately, most of these APAS lacking a
systematic means of generating test sets or test data
automatically.

By default, APA necessitates test data to execute dynamic
testing on students’ program [1]. In software testing,
manually or unsystematically generating test data is
laborious, prone to errors, demanding, an expensive, and
feasible task in practice [10]. Dealing with these concerns,
some methods to realize automated test data generations
have been proposed in the industry [11]-[16]. Activities
dealing with the process of generating test data automatically
are commonly referred to as Automated Test Data
Generation or ATDG. In APA particularly, it happens to
serve the same problematic issues. Even the programming
assessments could be realized automatically in the most
efficient way, the means of preparing test data most of the
time remains as manual effort or depending on pre-set test
data in files. However, it appears in the recent studies of

120

APA very few of them seemed to utilize these methods.
Among of those studies that focus on structural testing
include Ihantola [17], Tillman et al. [18], and Romli [19].
Path coverage criterion is identified as the most popular
structural code coverage used to realize the process of test
data generation for structural testing in APA.

In designing test cases or test data, particularly for
structural testing, it is notable for ensuring that testing could
achieve a certain level of thoroughness. This thoroughness
will determine how adequate the testing is [20]. As adequate
testing is typically counted on test adequacy criteria [21],
hence it can distinguish between good and bad test cases and
determine whether the testing is enough [22]. The means of
designing test cases for structural testing is dealing with
structural coverage criteria such as statement coverage,
branch coverage, path coverage, condition/decision coverage,
multiple condition coverage and Modified
Condition/Decision Coverage (MC/DC) coverage [23].

Existing studies in APA that are focusing on the test data
generation to derive and generate test data for structural
testing (as previously mentioned) have not sufficiently
included the ideal test criterion to derive adequate test data
with a certain level of thoroughness. Regarding these issues,
this study proposes an automated method of test data
generation to execute dynamic-structural testing that
integrates path testing coverage and Modified Condition/
Decision Coverage (MC/DC).

This paper is organized as follows: In section 2, the
related works concerning integration of APA and ATDG are
addressed. Section 3 layouts the detailed design of the
DyStruct-TDG method. Section 4 provides a discussion on
the evaluation and results obtained from the conducted
controlled experiment to verify the adequacy of derived test
data. Finally, Section 5 is a conclusion to this paper.

A. Related Work

Since the 1960s, APA has gained more attention from
researchers in the area of Computer Science education and
has continued to raise enormous attention until to date. Its
crucial aim mainly to introduce and promote APAS that
helps educators to lessen their workloads, to ensure the
consistency of marking assessment items and taking account
of thorough testing on students’ programming solutions [19].
Moreover, APA practically allows immediate feedback
without doing fewer exercises [17].

Based on a review done by Douce et al. [24], APAS are
commonly grouped into three generations, which can be
described from early assessment tools to Command-Line
Interface (CLI) or Graphical User Interface (GUI)
distributed systems and later as web-based systems. On top
of that, Ihantola et al. [25] also provided a more detailed
review, of which identified that most of the assessment tools
were developed for one specific class or assignment which
eventually forced the programming instructors or lecturers to
develop their own the test data frameworks to observe the
functionality and behavior of the programs they required for.
Besides, a study conducted by Liang et al. [26] outlined that
there were a small number of APAS that furnished rich,
critical and timely response. Also, more details on the
advantages of APAS have been outlined in a study
conducted by Rahman and Nordin [27].

Even there have been some automated methods for test
data generation available to support activities in software
testing, yet existing studies of APA seldom adopt these
methods systematically even the focus is structural testing.
As previously mentioned in the prior section, it happens
merely very limited studies have put attentions on
integrating APA and ATDG where the emphasis is on
structural testing. The following paragraphs provide briefly
explanations on those related studies.

A study proposed by Ihantola [17] applied a software
model checker named Java PathFinder (JPF) with utilizing a
symbolic execution technique to generate test data to support
structural testing. Also, Tillmann et al. [18] employed the
similar technique named dynamic symbolic execution to
generate the required test data.

Among the most recent study is as proposed by Romli
[19]. The study proposes a framework of test data generation
to execute APA which covered both testing categories:
structural and functional testing. In realizing ideal test
criterion, the framework embeds both the positive testing
and negative testing criteria. In terms of the structural testing
coverage, it is regarding path testing coverage criteria. Table
1 summarizes the described studies.

TABLE I
INTEGRATION OF APA AND ATDG (EXTENDED FROM ROMLI [19])

Author
(Year)

Type of Testing
(Dynamic)

Test Data Generation
Method

Functional Structural
Ihantola
[17]

No Yes Symbolic execution
with JPF

Tillman
et al.
[18]

No Yes Dynamic symbolic
execution with Pex

Romli
[19]

Yes Yes Positive and negative
testing with path
coverage and an
integration of
specification derived
test and simplified
boundary analysis
techniques

Based on the prior explanation, it can be concluded that to

date, only very few studies have made systematic efforts to
integrate both APA and ATDG particularly to achieve
structural testing. It is shown that the studies merely utilized
the techniques to cover test data adequacy criteria which did
not consider the thoroughness criteria of the generated test
cases. By addressing this gap, this study proposes a method
called DyStruc-TDG which adapting MC/DC criteria to
derive and generate adequate test cases and test data to cover
more thorough testing coverage.

II. MATERIAL AND METHOD

The DyStruc-TDG method was constructed by
translating the selected structural coverage criteria (that is
MC/DC criteria) into a design of test cases. The method only
covers the positive testing criterion [28][29]. The following
Fig. 1 illustrates an activity diagram that shows processes
involved in the DyStruc-TDG method.

121

MC/DC is a structural coverage criterion that explains
every condition separately change the result [20]. The
decision gets hold of all potential outcomes at least once and
covers both the true and false values. Each condition in the
decision independently affects the decision’s outcome.
MC/DC is usually practical for vital systems which
developed in the avionics field and one of the more practical
criteria to be applied [23]. If it is given a segment of codes in
Fig. 2, the required test cases to be executed to cover the
MC/DC coverage is shown in Table 2.

The important aspect of MC/DC is testing should show
the independent effect of atomic Boolean conditions on the
Boolean expressions in which they occur [30]. Based on the
mentioned MC/DC criteria, Table 3 concludes the formula
for generating test cases by applying MC/DC coverage
criterion by considering the minimum number of test cases
that would apply to cover adequate test cases particularly for
APA. However, in the worst-case scenario, the formula
obtained will be 2×N (example as shown in Table 2).

Fig. 1 An activity diagram showing processes involved in dystruc-TDG
method

Fig. 2 Code segment for selection control structures (MC/DC)

In order to demonstrate how the design of the test set in

the DyStruc-TDG method is mapping to APA, the sub-

sequence paragraphs provide the related details. Fig. 3
depicts the sample of programming exercise; Table 4 shows
its respective Boolean expressions with their True and False
values and Table 5 summarizes the derived test cases and
test data. Based on Table 3, as the number of options is two
(see Table 4), hence 4 test cases will be generated based on
the rule of truth table (see Table 6). As MC/DC only
considers test cases that independently effect on each option
(see Table 7 and Table 8), hence 3 test cases as shown in
Table 5 are selected. By referring Table 6, TC4 is excluded.

TABLE II
TEST CASES GENERATION USING MC/DC

Test Case X Y Z X&&Y=A A||Z
TC1 T T F T T
TC2 F T F F F
TC1 and TC2 show independence of X (covers X)
TC3 T T F T T
TC4 T F F F F
TC3 and TC4 show independence of Y (covers Y)
TC5 F F T F T
TC6 F F F F F
TC5 and TC6 show independence of Z (covers Z)

TABLE III
THE FORMULA OF DERIVING TEST CASES OBTAINED FROM MC/DC

No of Options
(N)

Truth Table
(��)

MC/DC
(N+1)

1 1 2
2 4 3
3 9 4
4 16 5
5 32 6

Fig. 4 illustrates an example of programming exercise

with do…while loop. Table 9 shows its respective Boolean
expressions with their True and False values of each
respective variable involved and Table 10 summarizes the
derived test set and test data. This study adapts loop
coverage criteria to guide in deriving the required test cases.
Loop coverage (is also called loop boundary adequacy)
ensures that for every loop, there are test cases to test the
loop so that it iterates zero time, at least once, and more than
once [31]. As APA does not require pervasive testing, hence
in the DyStruc-TDG method, we only consider test cases to
cover zero and more than one iteration. Thus, only two test
cases are considered in this case, as it merely involves one
option (see Table 10).

The DyStruc-TDG method can generate test data for
various data types such as integer, real numbers, character,
String, Boolean and others, based on the True and False
values of an individual Boolean expression. The True value
is derived based on the value at the boundary of a given
Boolean expression. It is realized by directly extracting the
relational and logical operator and value defined as part of
the Boolean expression (see Table 4 and Table 9). For
example, if the Boolean expression is (age>=20), the True
value is 20. On the other hand, the False value is generated
by finding among the nearest value as extracting from the
given Boolean expression (that is outside from the given
boundary). For example, if the Boolean expression is
(age>=20), the false value is 18.

122

Fig. 3 Sample of Programming Exercise with Two Variables as Part of Its
Boolean Expressions.

TABLE IV
BOOLEAN EXPRESSION WITH THE TRUE AND FALSE OF EACH RESPECTIVE

VARIABLES INVOLVED

Expression/Option Variable True
value

False
value

(age>=20) = A age 20 18
(city==’K’) = B city ‘K’ ‘A’

TABLE V
GENERATED TEST CASES AND TEST DATA FOR THE TWO OPTIONS AS

SHOWN IN TABLE IV

Test Case Option (A) age Option (B) city
TC 1 True 20 True ‘K’
TC 2 False 18 True ‘K’
TC 3 True 20 False ‘A’

TABLE VI
GENERATED TEST CASES BASED ON TRUTH TABLE

Test Case Option (A) Option (B) Option (A&&B)
TC 1 True True True
TC 2 True False False
TC 3 False True False
TC 4 False False False

TABLE VII
TEST CASES WITH INDEPENDENTLY EFFECT ON OPTION (A)

Option (A) Option (B) Option
(A&&B)

Test Case
(from Table 6)

True True True TC 1
False True False TC 3

TABLE VIII
TEST CASES WITH INDEPENDENTLY EFFECT ON OPTION (A)

Option (A) Option (B) Option
(A&&B)

Test Case
(from Table 6)

True True True TC 1
True False False TC 2

Fig. 4 Sample of Programming Exercise for Do…While Loop with One
Variable as Part of Its Boolean Expression.

TABLE IX
BOOLEAN EXPRESSION WITH THE TRUE AND FALSE OF EACH RESPECTIVE

VARIABLES INVOLVED

Expression/Option Variable True
Value

False
Value

(x<50) = A x 48 52

TABLE X
GENERATED TEST CASES AND TEST DATA FOR THE TWO OPTIONS AS

SHOWN IN TABLE IX

Test Case Option (A) x
TC1 True 48
TC 2 False 52

III. RESULTS AND DISCUSSION

A controlled experiment that utilizes the one-group pretest
and post-test design [32] were conducted in this study. This
experiment aimed to verify the completeness coverage of
test data adequacy-reliability on the DyStruc-TDG method.
The subjects of the controlled experiment were among the
lecturers who have been teaching the programming courses
in one of the public universities in the northern region of
Malaysia. Due to the different teaching schedules of the
lecturers, the experiment was conducted as multi-shot
sessions individually. The data were collected from the
subjects only at one time instead of collecting several times.
In this experiment, the number of subjects was ten (10).

The controlled experiment used a set of pre-test and post-
test questions to collect the required data. The set of pre-test
and post-test questions have consisted of the same contents.
Four samples of programming exercises were used as the
assignments of which cover the main two control structures
(selection and repetition). One question to cover the
selection, two questions with regard repetition (counter-loop
and sentinel-loop) and the remaining one is an integration of
the selection and repetition control structures. Each exercise
was provided with its solution model.

This study also conducted a comparative evaluation to
provide a comparative analysis of the coverage of test cases
and test data between the DyStruc-TDG method and other
methods proposed by previous researchers. There are three
studies were selected for the comparison with the DyStruc-
TDG method: Ihantola [17] and Tillmann et al. [18] and
Romli [19]. A sample of programming exercise was used as
a benchmark for the comparison. In this article, particularly
for the controlled experiment, its result only will cover two
of the provided programming exercises (selection and
repetition). The following paragraphs include the analysis
and results of the mentioned evaluations.

For the selection control structure, the programming
exercise used in the controlled experiment, its control flow
(in an activity diagram) can be illustrated as in Fig. 5. Table
8 shows the paths covered for the selection control structure
which consisted of 3 paths (path 1, path 2 and path 3). Table
11 has listed the number of test cases to cover the 3 paths by
each subject. The mean of deriving test cases and test data
were based on as has been applied in current practice (or
Current Method). Table 12 shows the total of test cases
produced by each subject considering all the 3 paths.

123

Fig. 5 An Activity Diagram Showing the Control Flow of a Selection
Control Structure.

TABLE XI
NUMBER OF PATHS FOR THE SELECTED SELECTION CONTROL STRUCTURE

Path 1 Path 2 Path 3
if (age>=21 &&
age <= 200) is True

if (age>=1 &&
age <= 20) is
True

if (age<1 && age >
200) is True

TABLE XII
NUMBER OF TEST CASES BY EACH SUBJECT BASED ON EACH PATH

Subjects

Path 1
(Test

Cases)

Path 2
(Test

Cases)

Path3
(Test

Cases)

Total of
Test

Cases
1 2 4 0 6
2 3 2 2 7
3 1 2 0 3
4 3 4 3 10
5 2 2 2 6
6 3 3 2 8
7 4 2 4 10
8 4 4 2 10
9 1 1 4 6
10 1 0 4 5

In the case of the DyStruc-TDG method, it generates test

cases in a consistent way for each path by considering each
Boolean expression individually based on MC/DC coverage
concept. For example, Path 1 (if (age>=21&& age <=200)
is true) has two Boolean expressions (age>=21) and (age
<=200). Based on MC/DC formula, the DyStruc-TDG
method generates 3 test cases. Also, both of Path 2 and Path
3 also have 2 Boolean expressions. Concerning this, the
DyStruc-TDG method also generates 3 test cases for each
path. Table 13 has listed the individual test cases derived by
the DyStruc-TDG method and the total of test cases
produced by the method considering all the 3 paths.

A line graph from Fig. 6 shows a comparison between the
number of test cases derived by the subjects and the
DyStruc-TDG method. The DyStruc-TDG method
consistently generated test cases and covered all the paths.
Based on MC/DC criteria, the DyStruc-TDG method
considers each Boolean expression individually and at the
same time, has fully covered path testing coverage. On the
other hand, the subjects appeared to derive test cases
inconsistently and indeed, some subjects did not cover all the

paths (see Table 9). Also, they did not consider each
Boolean expression individually as what MC/DC criteria did.

TABLE XIII
NUMBER OF TEST CASES DERIVED BY DYSTRUCT-TDG METHOD BASED ON

EACH PATH

Subjects

Path 1
(Test

Cases)

Path 2
(Test

Cases)

Path3
(Test

Cases)

Total of
Test Cases

1 3 3 3 9
2 3 3 3 9
3 3 3 3 9
4 3 3 3 9
5 3 3 3 9
6 3 3 3 9
7 3 3 3 9
8 3 3 3 9
9 3 3 3 9
10 3 3 3 9

From the line graph, the subjects (4, 7, and 8) derived one

extra test case then the DyStruc-TDG method. In this case,
the DyStruc-TDG method reduces one test case. On the
other hand, other subjects appeared to derive fewer test cases
than the DyStruc-TDG method. Although the related
subjects produced fewer test cases, they seemed likely did
not cover all the paths and each Boolean expression
individually. Thus, this result concludes that the subjects
happened to did not deriving consistent test cases to provide
thoroughness testing as compared to the DyStruc-TDG
method of which covers all the paths and Boolean
expressions individually and provides the thoroughness of
testing. The results of other programming exercises
happened to have similar patterns as for the selection control
structure. However, for the sentinel-loop control structure,
DyStruc-TDG method came out with a smaller number of
test cases that are considered adequate and does cover
thoroughness testing. The sub-sequence paragraphs provide
a brief explanation of the means of deriving test cases and
test data for the sentinel-loop control structure.

For the sentinel-loop control structure, the programming
exercise used in the controlled experiment, its control flow
(in an activity diagram) can be illustrated as in Fig. 7. The
question was about the repetition control structure for a
sentinel loop which consisted of one path with a Boolean
expression (number! = 0). Table 14 shows the number of
derived test cases as has been applied in current practice
(Current method). It is shown that various patterns in the
means of deriving test cases across different subjects.

In the case of the DyStruc-TDG method, like the selection
control structure, it consistently generates test cases for the
identified path by considering the included Boolean
expression (number! =0). Based on MC/DC formula (as
mentioned in the prior section), the DyStruc-TDG method
generates 2 test cases to cover both True and False values as
only test cases to cover zero and more than one iteration
have been considered. As compared to the test cases derived
based on the Current Method, it happened some subjects
derived more test cases for False values, whereby only one
value is enough to cover adequate testing. Some others
happened to consider more test cases covering for True
values. These inconsistent situations possibly will increase

124

the number of test cases derived when the number of options
increases.

Fig. 6 Test Cases Coverage between the Current Practice (as Employed by
the Subjects) and DyStruc-TDG Method for a Selection Control Structure.

Fig. 7 An Activity Diagram Showing the Control Flow of a Repetition
(sentinel-loop) Control Structure.

TABLE XIV
NUMBER OF TEST CASES BY EACH SUBJECT BASED ON PATH NUMBER!=0

Subjects
Path number! =0

(Test Cases)
1 4
2 3
3 4
4 6
5 3
6 5
7 4
8 6
9 3
10 3

By referring to Table 14, Subject (4) derived a total of 6

test cases, where 1 test case is for a True value and another 5
test cases are for False values. A similar pattern has been
shown by Subject (6) in which he/she derived 4 redundant
test cases merely to cover False value. Based on the loop
boundary adequacy, one test case is adequate to cover False
value regardless of any data type. A line graph from figure 8

shows a comparison between the number of test cases
derived by the subjects and the DyStruc-TDG method for the
programming exercise shown in Fig. 9. Again, it can be
concluded that the DyStruc-TDG method is able to derive
and generate test cases and test data in consistent way and
covered all the necessary paths.

Fig. 8 Test Cases Coverage between the Current Practice (as Employed by
the Subjects) and DyStruc-TDG Method for a Repetition Control Structure.

As previously mentioned, this study also conducted a

comparative evaluation to compare in terms of test data
adequacy for structural testing. The comparison was done
among three studies in structural testing namely Ihantola [17]
and Tillmann et al. [18]; Romli[19] and DyStruc-TDG. Fig.
9 depicts a sample of programming exercises used for this
comparison.

Fig. 9 Sample of Programming Exercise Used for Comparative Evaluation

The following Table 15 shows the result of a comparison
between the three selected studies of which the focus is on
structural testing. Based on the comparative evaluation, it
shows that Ihantola[17] and Tillmann et al.[18] and
Romli[19] have derived respectively 4 and 5 test cases. On
the other hand, the DyStruc-TDG method has derived 9 test
cases. However, in terms of the structural testing coverage,
as DyStruc-TDG method utilized MC/DC criteria, hence it
covers each Boolean expression individually. The study
proposed by Romli [19] requires human involvement to
assign test data for the generated test cases whereby the
DyStruc-TDG method able to derive and generate test cases
and test data automatically. Thus, it concludes that the
DyStruc-TDG method has covered more thoroughness

6
7

3

10

6

8

10 10

6
5

9 9 9 9 9 9 9 9 9 9

0

2

4

6

8

10

12

0 5 10 15

T
e

st
 C

a
se

s

SubjectsCurrent Method

DyStruc-TDG

Input number

number==0

Calculate
sum = sum + number

Display sum

sum = 0

number! =0

125

testing than another three studies proposed by Ihantola [17]
and Tillmann et al. [18] and Romli[19].

TABLE XV
RESULT OF THE COMPARATIVE EVALUATION

Criteria of
comparison

Ihantola
[17] and

Tillmann et
al. [18]

Romli [19] DyStruc-TDG

Number of
test cases

4 5 9

Test data
coverage

1. age >=
21 &&
age <=
200

2. age >= 1
&& age
<= 20

3. age < 1
&&
age > 200

1. age >=
21 &&
age <=
200

2. age >= 1
&& age
<= 20

3. age < 1
4. age >

200
5. Illegal

path
condition

1. age >= 21
&& age <=
200

2. age >= 1 &&
age <= 20

3. age < 1
4. age > 200

Values of
test data

Input
parameter
based on
path
condition

Lecturer
need to
assign test
data

Automated
generated

IV. CONCLUSION

This paper has presented the means of deriving adequate
test cases and test data of which covering the thoroughness
testing. The method is called DyStruc-TDG method to cover
dynamic structural testing in APA. As to realize the method
by way of a tangible deliverable a test data generator
prototype was developed. An evaluation to verify the
completeness coverage of the criteria test data adequacy-
reliability of the proposed method was conducted via the
developed test data generator. The verification was done by
comparing the derived test cases and test data produced by
the educators who have been teaching introductory
programming courses as compared to those produced by the
DyStruc-TDG method. The results obtained from this
verification revealed that the DyStruc-TDG method can
derive the desired test cases and test data that do satisfy the
test data adequacy criteria and enough thoroughness testing
level. Overall, this method is significantly able to assist
educators and instructors of introductory programming
courses to derive and generate an adequate set of test data
automatically regardless of having any detailed knowledge
in designing test cases for structural testing.

ACKNOWLEDGMENT

We would like to acknowledge the Ministry of Higher
Education Malaysia - FRGS Fund (S/O Code: 12821) of
Universiti Utara Malaysia for supporting this work.

REFERENCES
[1] R. Romli, S. Sulaiman, K. Z. Zamli, “Automatic programming

assessment and test data generation a review on its approaches”.

In Proceedings of Information Technology (ITSim) International
Symposium 3, 2010, pp.1186-1192.

[2] D. Jackson, “A Software System for Grading Student Computer
Programs”, Computers and Education, 27 (3-4), pp. 171-180, 1996.

[3] R. Saikkonen., L. Malmi, A. Korhonen, “Fully Automatic
Assessment of Programming Exercises”, ACM SIGCSE Bulletin, 33
(3), 2001, pp.133-136. R. E. Sorace, V. S. Reinhardt, and S. A.
Vaughn, “High-speed digital-to-RF converter,” U.S. Patent 5 668
842, Sept. 16, 1997.

[4] D. Jackson, M. Ushe, “Grading student programs using ASSYST”,
Proceedings of the 28th SIGCSE Technical Symposium on Computer
Science Education, San Jose, CA., 1997, pp. 335–339.

[5] M. Luck, M. S. Joy, “A secure on-line submission system”, Journal
of Software – Practise and Experience, 29 (8), pp. 721-740, 1999.

[6] L. Malmi, V. Karavirta,, A. Korhonen, J. Nikander, O. Seppala, P.
Silvasti, “Visual Algorithm Simulation Exercise System with
Automatic Assessment: TRAKLA2”, Informatics in Education, 3(2),
pp. 267-288, 2004.

[7] M. Choy, U. Nazir, C.K Poon, Y.Y Yu, “Experiences in Using an
Automated System for Improving Students’ of Computer
Programming” , Advances in Web-Based Learning – ICWL 2005,
Lecture Notes in Computer Science, Vol. 3583/2005, 2005, pp. 267–
272.

[8] T. Tang, R. Smith, J. Warren, S. Rixner, “Data-Driven Test Case
Generation for Automated Programming Assessment”, Proceedings
of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education ITiCSE 16, 2016, pp. 260-265.

[9] H. Fangohr, N. O'Brien, A. Prabhakar, A. Kashyap, “Teaching
Phyton Programming with Automatic Assessment and Feedback
Provision”, arXiv:1509.03556 [cs.CY], 2015, pp. 1-26.

[10] S. Monpratarnchai, S. Fujiwara, A. Katayama, T. Uehara,
“Automated Testing for Java Programs using JPF-based Test Case
Generation, ACM SIGSOFT Software Engineering Notes, 39 (1),
2014, pp. 1-5.

[11] L. A. Clarke, “A system to generate test data and symbolically
execute programs”, IEEE Transaction on Software Engineering, SE-
2(3), pp. 215-222, 1976.

[12] N. Gupta, A.P Mathur, M. L Soffa, “Automated Test Data
Generation Using an Iterative Relaxation Method”, ACM SIGSOFT
Software Engineering Notes, 23 (6), pp. 231-245, 1998.

[13] J. Offutt, S. Liu, A. Abdurazik, P. Ammann, “Generating Test Data
from State-Based Specifications”, Software Testing, Verification and
Reliability, Vol. 13, pp. 25–53, 2003.

[14] K.Z. Zamli,. A. M. Isa, M. F. J. Klaib, S.N. Azizan, “Tool for
Automated Test Data Generation (and Execution) Based on
Combinatorial Approach”, International Journal of Software
Engineering and Its Applications, 1(1), pp. 19-36, 2007.

[15] W. Zidoune, T. Benouhiba, “Targeted adequacy criteria for search-
based test data generation”, International Conference on Information
Technology and E-Services, 2012, pp. 1-6.

[16] R.P. Pargas, M. J. Harrold, R. Peck, “Test-Data Generation Using
Genetic Algorithms”, Journal of Software Testing, Verification and
Reliability, 9(4), pp. 63-282, 1999.

[17] P. Ihantola, “Test Data Generation for Programming Exercises with
Symbolic Execution ind Java PathFinder”, Proceedings of the 6th
Baltic Sea Conference on Computing Education Research: Koli
Calling 2006, 2006, pp. 87 – 94.

[18] N. Tillmann, J. D Halleux, T. Xie, S. Gulwani, J. Bishop, “Teaching
and Learning Programming and Software Engineering via Interactive
Gaming”, Proceedings of the 2013 International Conference on
Software Engineering (ICSE’13), San Francisco,CA, USA, 2013, pp.
1117-1126.

[19] R. Romli, “Test Data Generation Framework for Automatic
Programming Assessment”, PhD Thesis, Universiti Sains Malaysia,
Malaysia, 2014.

[20] K. J. Hayhurst, D. S. Veerhusen, J.J. Chilenski,, L.K Rierson, “A
practical tutorial on modified condition/decision coverage”, NASA
STI Report Series, 2001.

[21] H. Zhu, P.A. V. Hall, J. H. R May, “Software Unit Test Coverage
and Adequacy”, ACM Computing Surveys, 29 (4), pp. 365-427, 1997.

[22] H. Zhu, “Axiomatic Assessment of Control Flow-based Software
Test Adequacy Criteria”, Software Engineering Journal, 10 (5), pp.
194 -204, 1995.

[23] K. Ghani, J.A Clark, “Automatic Test Data Generation for Multiple
Condition and MCDC Coverage”, Proceedings of the 2009 Fourth
International Conference on Software Engineering Advances, 2009,
pp. 152 -157.

126

[24] C. Douce, D. Livingstone & J. Orwell, J. “Automatic test-based
assessment of programming: A review”, Journal on Educational
Resources in Computing (JERIC), 5(3), Aticle No. 4, 2005.

[25] P. Ihantola, T. Ahoniemi, V. Karavirta & O. Seppälä, O. “Review of
recent systems for automatic assessment of programming
assignments”, In Proceedings of the 10th Koli Calling International
Conference on Computing Education Research, 2010, pp. 86-93.

[26] PY. Liang, Q. Liu, J. Xu & D. Wang, D. “The recent development of
automated programming assessment”. Proceedings of International
Conference on Computational Intelligence and Software Engineering
(CiSE 2009), 2009, pp. 1-5.

[27] K. A. Rahman & M. J. Nordin, A review on the static analysis
approach in the automated programming assessment systems.
Proceedings of National Conference on Programming, 2007, Vol. 7.

[28] IPL Information Processing Ltd. Designing Unit Test Cases, 1997.
Available: http://www.ipl.com/pdf/p0829.pdf. Retrieved on: 10 Feb
2009.

[29] J. Watkins, S. Mills, Testing IT: An Off-the-Shelf Software Testing
Process, 2nd Edition, 2011, Cambridge University Press, NY, USA.

[30] S. Rayadurgam, M.P.E. Heimdahl, “Generating MC/DC Adequate
Test Sequences Through Model Checking”, Proceedings of the 28th
Annual IEEE/NASA Software Engineering Workshop -- SEW-03.
Greenbelt, Maryland, 2003, pp. 1–5.

[31] M. Pezze, M. Young, Software Testing and Analysis: Process,
Principles, and Techniques, 2008, John Wiley & Sons, Inc, USA.

[32] J.R. Fraenkel, N.E Wallen, How to Design and Evaluate Research in
Education, 4th Edition, 2000, McGraw-Hill Companies, Inc, U.S.A.

127

