
Vol.12 (2022) No. 3

ISSN: 2088-5334

Job Scheduling Strategies in Grid Computing

Ardi Pujiyanta a,b,*, Lukito Edi Nugroho a, Widyawan a
a Department of Electrical Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada,

Yogyakarta, Indonesia
b Department of Informatics Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

Corresponding author: *ardi.pujiyanta@mail.ugm.ac.id

Abstract— Grid computing can be thought of as large-scale distributed cluster computing and distributed parallel network processing.

Users can obtain enormous computing power through network technology, which is challenging to get from a single computer. Job

scheduling in grid computing is a critical issue that affects the overall grid system capability. In traditional scheduling, jobs are placed

in queues, waiting for the availability of resources. Reservations reject if the required resources not obtained at the specified time. The

impact that arises is the reduced use of resources. The scheduling algorithm and the parameters used to perform the work may vary,

such as execution time, delivery time, and the number of resources. There is no guarantee when the job will execute using the scheduling

algorithm. Therefore, it is necessary to improve resource utilization in the grid system and ensure that jobs will be carried out. This

paper proposes a reservation scheduling strategy for MPI work, First Come First Serve Left Right Hole (FCFS-LRH). MPI jobs execute

simultaneously, using more than one resource for implementation. When Completed, user MPI jobs will be scheduled on virtual

compute nodes and mapped to actual compute nodes. The experimental results show that the increase in resource utilization strongly

influenced by time flexibility.

Keywords— Advance reservation; MPI Job; FCFS-LRH; grid systems.

Manuscript received 22 Oct. 2019; revised 13 Dec. 2020; accepted 25 Jan. 2021. Date of publication 30 Jun. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The availability of high-speed networks and the effective

use of computers have increased the demand for grid

computing. Cluster computing is a form of large-scale

distributed parallel network processing and can be thought of

as grid computing[1]. Users can obtain enormous computing
power through network technology, which is difficult to

obtain from a single computer. In grid computing, resource

allocation and job scheduling are critical issues affecting

overall grid system capability. Jobs in traditional scheduling

will be placed in queues waiting for required resources.

Parameters used in the execution of work may vary, such as

execution time, delivery time, and required resources[2][3].

There is no guarantee when the work will execute using the

scheduling algorithm[4].

Start time, execution time, and the number of resources are

parameters that need to be provided in a rigid scheduling
system, if a user requests a resource to do his job[5]. The

consequence of a rigid reservation mechanism will cause idle

resources between jobs, this is due to the unavailability of the

required resources within a predetermined time limit. The

impact of idle resources, will cause resource utilization to

decrease. Shi, et al.[6] propose the use of a new elastic

resource, the job with the highest priority will be executed

first. Sulistio et al. [7] proposes an elastic reservation with the

user query parameter used as a soft constraint. The request is

not rejected, but the user will be given an alternative choice

of time by the reservation system. After the user selects one

of the given alternative options, the user resubmits the request.

However, this time, the request was sent using the rigid

reservation method, because there is a guarantee of resource
availability. Overlapping timeslots are proposed to overcome

the problem of decreasing resource utilization [8],[9],[10].

Job start time period used by Chunming et al. [11] in his

research called slack-time. This mechanism is called FIRST

(Flexible Reservation using Slack Time). Slack-time can

reduce rejection rates and improve resource utilization; in a

way that the work start time can be shifted. The system will

reschedule all non-executed reservations one by one if a new

reservation arrives, according to FIFO (First In First Out)

rules. A new reservation request is rejected if a solution is not

found. Use of overlapping time slots [8] address the problem
of decreasing resource utilization caused by reservations.

1293

Time spent on a job tends to exceed the reservation time limit

in getting the job done. User jobs will still be scheduled, even

if there are overlapping job orders. In flexible reservation, the

user's work is planned and given flexible constraints with

varying start times and in certain time intervals [12],

[13],[14],[15],[16].

Eliza et al. [17] propose checking for empty slots on

available resources. If there is no empty slot during the

reservation request, the available empty slot will be reserved.

First Come First Serve Ejecting Based Dynamic Scheduling

(FCFS-EDS) is used to improve resource utilization in the
grid system on the local scheduler[18]. The disadvantage of

FCFS-EDS is that if the previous job cancels the job before it

is executed, the future job cannot occupy the space still used

by the canceled job then FCFS-EDS can only shift to the right.

Grandinetti et al. [19] have investigated a group of

independent jobs scheduled, with user-provided processing

time constraints. All processing nodes are assumed to be

identical. Workloads consist of batch jobs that require the

execution of space sharing. Thus, queued work can be started

if there are nodes that match the required capacity.

Research[20][21][22][23][22][24] researched the impact
of using backfilling algorithms in flexible reservations. The

backfilling strategy proposed is to make reservations early by

making space for new reservations to be allocated. The

drawback of backfilling is no certainty when the job is

executed because the next job must wait until the previous job

is executed. Anju Shukla et al.[25] proposed an algorithm to

reduce the average waiting time of a queued job. The job with

the least workload will execute first. The algorithm will

determine the least resources in the execution of the work. So

that the resulting schedule with the application of work based

on the shortest workload. If no resource is available as needed,
the job is placed in a queue until the resource is found. To

ensure there is a guarantee that the work will be executed in

the future. The reservation scheduling strategy is proposed

based on a virtual view instead of the physical view reported

in the literature.

II. MATERIAL AND METHOD

Experiments have carried out on planning and scheduling

strategies for MPI work. Characteristics of the workload in
this experiment are as follows [18][19][26][27][28][29].

 Reservation requests (µ=3 and 4), follow the Poisson

distribution.

 Request Execution time (te), they uniformly distributed.

 The earliest start time requests (tesr) uniformly

distributed between 0 and 24.

 The percentage of flexible reservation users is

randomly selected.

 Request reservation time (tf) is between 1 and 12,

evenly distributed.

The percentage sliding window of 12-time slots(1 hour)
calculated resource utilization. The proposed method is

compared with no reservation. The total amount of resources

used is 30, the percent flexibility is between 25%-100%, and

the number of jobs used is between 615 and 800.

A. Proposed Advanced Reservation Strategy

The proposed reservation strategy, named First Come First

Serve Left Right Hole Scheduling (FCFS-LRH), is used to

improve resource utilization in the grid system. The user job

is scheduled on the virtual compute node before the job is

executed. A flexible reservation is an execution time (te) less

than the execution time interval (tesr) to the end of execution

time (tesl), which is shown by the time diagram in Fig 1. Jobs

sent with parameters (JumCN, tesr, tlsr, te). Once the reservation

is received, it looks for free space on the virtual compute node

with the earliest start time. If there is, then the job is placed at

test time. Resources allocated. If no timeslot is found, the job

will shift to the job start time limit. The notification interval

is the difference between tlsr and tesr.

Fig. 1 Proposed flexible scheduling of reservations

t0: Current time

tesr: Lower limit of the job start time.

tsr: Time to start job (tesr ≤ tsr≤ tlsr)

tlsr: last start time, defined as tlsr= tesl– te = tn

tesl: Upper limit for ending time running a job
te: Time of execution of job.

tn: Notification time.

tr1,tr2 : tr1(left hole), tr1(right hole), tr defined by tr =tr1+tr2 = tesl-

tesr-te

tedl: The lower limit, defined as tedl=tesr+te

tcl: Time to get the job done (tedl≤tcl≤tesl)

tf: Flexibility time, tf = tesl–tesr

f: Level of flexibility, set as f = tf /te, with f≥1, (if f= ∞, a job

considered a not job reservation mode, if tesr=t0 and f=1.

reservation considered with the highest priority leads to a

direct scheduling mode [18].
userId: User identification

jobId: Job identification

JumCN: The number of computer resources needed

MaxCN: Total amount of computer resources.

The function of tr1 (left hole), is to provide free space, if

there is the next job in, then the previous slot can be shifted to

the right so that work that requires the next free space can

occupy it.

The tr2 (right hole) function, for example, user1 needs 5

minutes of work execution time, starting from t=10 to t=11,

while user2 needs time to execute the work for 15 minutes,
the earliest start time of execution can start from t=10 and the

last time the job starts is t=12 (Fig. 2). Then user1 cancels his

work, while user9 enters the execution of his work for 10

minutes, starting from t=13 to t=15, then user2 can be shifted

left to give user3 space to occupy the space t=13 to t=15 (Fig.

3).

1294

Fig. 2 Time slot diagram with four compute nodes, where eight users have

allocated each time slot.

Fig. 3 The reservation is flexible. A dotted box shows the new reservation

allocation.

B. Proof of Concept FCFS LRH

For example, maxS (maximum value of computational

node) in slot t, is:

�(�) = {�(�)� , �(�)� , �(�)�, … , �(�)� } (1)

maxS is the value of the work planning array, which is shown

by equation (1), where the i element of s(t) is s(t)(i), with the

id job already executed at the computational node i on the

timeslot t. pS(t) is the insertion of a new array of jobs in S(t)

in timeslot t:

pS(t) - pS(t+1) (2)

Equation (2) is a Job executed in slot t

pS(t+1) - pS(t) (3)
Equation (3) is a Job executed in slot t+1

 pS(t) ∩ pS(t+1) (4)

Equation (4) is a Job executed in slot t to slot t+1.

Bm= m(t) x m-1(t+1) (5)

If the job permutation matrix in time slot t is m(t) and the

inverse matrix of permutations in time slot t+1 is m-1(t+1).

Then Equation (5) shows a partial identity matrix (Bm), where

Bm: jobs executed at the same compute nodes from timeslot t

to t+1.

If S(t+1)(j)=S(t)(i) then

Bm(i,j)=1

Else
Bm(i,j)=0

Bm(i,j) =1 : Jobs in time slot t are executed on resource i,

and jobs in time slot t+1 are executed on resource j. For

example, if it knows six users are sending jobs, then the

system randomly breaks the role. Table 1 below illustrates

each virtual resource that has allocated work.

TABLE I

ALLOCATION OF JOBS TO VIRTUAL RESOURCES

Time Slot
Resource

N1 N2 N3 N4 N5

t 3 7 4 5 8
t+1 8 - 7 6 4

From Table 1, it can see that the job from user4 has

allocated to the timeslot t with the N3 resource number, and

at timeslot t+1 in the N5 resource number.

S(t)=[3 7 4 5 8]
S(t+1)=[8 - 7 6 4]

pS(t) - pS(t+1)= [3 5]

pS(t+1) - pS(t) = [6]

 pS(t) ∩ pS(t+1)= [8 7 4]

Solution:

a. Calculate the permutation matrix

 ���(� + 1) =

⎣
⎢
⎢
⎢
⎡0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

b. Calculate the difference in pS(t+1) with pS(t) :

 H = pS(t+1) - pS(t)
c. Combine H with the S-1(t+1), permutation matrix,

obtained

 � =

⎣
⎢
⎢
⎢
⎡0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

d. Multiply pS(t+1) with the complete permutation

matrix Y

��(� + 1)�

⎣
⎢
⎢
⎢
⎡0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

= �− 7 4 6 8#

TABLE II

RESULTS OF CALCULATION OF DATA TO S(t +1)

Node

Timeslot N1 N2 N3 N4 N5

t 3 7 4 5 8
t+1 - 7 4 6 8

Table 2 explains that userid3 job executed at N1 resource

at timeslot t. Job userid4 is run at N3 from timeslot t to t+1.

Job userid5 runs at the N4 at timeslot t. Job userid6 run by an

N4 resource at timeslot t+1. userid7 executed by N2 from

timeslot t to t+1, and job userid8 is run by resource N5 starting
timeslot t to t+1.

So the partial matrix identity

 $ = �(�) � ���(� + 1) =

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤

Job userid4 userid7, and userid8 executed in the same

resource from timeslot t to timeslot t+1 [26].

1295

C. Algorithm FCFS-LRH

User-submitted parameter, qReserv(tesr, tlsr, texe, jumCN),

to reserve resources (step1). The new reservation request is

described in the FCFS-LRH algorithm below, and the

parameter initialization shows step2. Suppose that there has
been an old qReserv(n-1) reservation, which previously

allocated using the FCFS-LRH algorithm. Then comes the

new qReserv(n) reservation that requests resources for

scheduled (step3 and step4). Without affecting the

qReserv(n-1) reservation plan that has allocated. The new

reservation will search for resources, up to the upper bound to

start job execution (last start time), as step4 shows. If the

required resource is found, the search will be successful. The

algorithm will create a new successful plan described by the

qReserv(n) reservation on the virtual node. If the requested

resource is not found within the flexible limit, the algorithm
will move the old qReserv(n-1) reservation shown in step5

and step6, to allocate qReserv(n). If the qReserv(n-1)

reservation fails, then the qReserv(n-1) reservation plan must

be returned to the original state shown in step7.

After the qReserv(n) reservation is scheduled on the virtual

node, the next step is to recombine the fragmented job on the

virtual node using an algorithm that refers to [26], so that it

can execute on the physical node.

Algorithm I

Function searchSlotFree
Step1: Input (userId, jobId,tesr,tlsr,te,jumCN)

Step2: Parameter initialization
time=0, minSlot=0,seltr=tlsr-tesr,succ=false.
Step3: if(!succ), the condition not fulfilled go to step5

Calculate start=tesr, finish=tesr+texe–1, flexible=start–
tesr.

Step4: Calculate job shift
 while(!succ and flexible<=seltr), the condition is not
fulfilled go to step5
 minSlot = nodeFree(start, finish);

 if (jumCN <= minSlot)
 alloc(userId,jobId,tesr,start,tlsr,texe, jumCN)
 succ=true
 Otherwise Calculate start=time+1,
 finish=start+texe–1, flexible=start-tesr
Step5: Calculate start=tesr, finish=tesr+texe–1,
 flexible=start-tesr;
Step6: Calculate insertion and job shift

 while(!succ and flexible<=seltr), the condition is not
fulfilled go to step7
 minSlot=nodeFree(start, finish);
 if (jumCN<=minSlot)
 alloc(userId,jobId,tesr,start,tlsr,texe,jumCN)
 succ=true
 Otherwise
 if (!insRes(userId, jumCN-minSlot)

 Calculate start=time+1, finish=start+texe-1,
 flexible=start-tesr
Step7: if(!succ) // return the job to its original
 place, because the job failed to shift
 backInsJob()

Step8: return succ

 Algorithm 2 used to search for the minimum timeslot for

qReserv(n) reservations that arrive. Step1 shows the initial

value of the number of slots in pSlot[start]. Variable time used

to receive the slot number value at the beginning of the search.

Step2 searches for the minimum slot value required for the

qReserv (n) reservation, starting at the start to finish interval.

Step3 returns the minSlot variable value if the search is

complete.

Algorithm II
Function nodeFree(start, finish)
Step1: Calculate minSlot = pSlot[start].getFree,
 time = start;
Step2: calculate the minimum timeslot at the pSlot
 For i=start,…,i<=finish
 If (pSlot[i].getFree() < minSlot)

 minSlot = pSlot[i].getFree
 time = i
Step3: return minSlot

According to the minimum timeslot that the user needs,

algorithm 3 is used to allocate qReserv(n) to structured

timeslot data. Step1 is used to calculate the value of the

variable finish. Step2 is used to create a comp object that

contains user information. Step3 is used to add the job (comp)

component to the timeslot pSlot[start] because of the

scheduled success. Step4 executes the AllocFF procedure to
allocate user requests to the virtual node. Step5 updates

timeslot on pSlot because of the addition of jobs(comp).

Algorithm III
Procedure alloc
Step1: calculate finish=start+texe-1;
Step2: create a comp object that contains (userId, jobId,

tesTime, startTime, tlsstartTime, execTime, endTime, jumCN);
Step3: Append(start, comp);
Step4: AllocFF(start, comp);
Step5: calculate timeslot on pSlot using loops
 For i=start,…,i<=finish
 pSlot[i].setFree(pSlot[i].getFree-jumCN);

Algorithm 4 is used to allocate jobs ID on specific timeslot

virtual nodes that paired with specific resource numbers, after

successful job placement.

Algorithm IV
Procedure AllocFF
Step1: create cellx object containing (userID, jobID, startTime,
tlsstartTime)
Step2: calculate For c=0,…,c<comp.jumCN

Step3: calculate For k=0,…,k<comp.texe
Step4: calculate For j=0,…, j<maxCN
 If (cell[start+k][j].userID= =0)
 cell[start+k][j]= cellx,
 break.

Algorithm 5 used to reallocate the jobId in its original place

because it has failed to shift right. Explanation of algorithm 5

as follows: step1 is used to create objects. Step2 is used to test

the condition of the stack, and this stack contains jobs that

have failed to shift right. If the stack is not empty, take the top

stack, S1 (step 3), give the startTime attribute of S1 on the

variable start. The loop on step4 looks for jobs that failed to

shift, to return to their original place. Look for the same S1
(step5) value in timeslot pSlot[start], if found, delete the job

1296

in pSlot[start] and delete the job on the virtual node. Update

startTime and endTime on comp.setstartTime(start-1). Return

the job to the original timeslot by calling the Append (start-1,

comp) procedure, because it has failed to shift right at timeslot

pSlot[start]. The next step is to reduce the timeslot on the left

side of the pSlot[start-1], with jumCN, and add the number

CN to the right side of pSlot[endTime+1]. The break

commands. If to exit the step4 loop. Continue the search until

all S1 values are removed from the stack or until the stack is

empty (step2).

Algorithm V

Procedure backInsJob

Step1: Create a stack object, listComp, comp, S1
Create stack=new Stack<Component>
Create listComp=new LinkedList<Component>
Create Component comp, S1
Step2: while(stack is not empty)
// The stack contains jobs that failed to move right
// take the top stack on the stack for example S1
Step3: Calculate S1=stack.pop, start=S1.startTime;

Step4: For i=0 to i<pSlot[start].listComp.size
Step5: If(pSlot[start].listComp(i)==S1)
 comp=pSlot[start].listComp.remove(i);
 delete cell objects on the virtual node
 comp.setstartTime(start-1)
 Append(start-1, comp)
 Reduce the timeslot on the left side of pSlot[start-1], with
jumCN;
 add timeslot on the right side of pSlot[endTime+1], with

jumCN;
 break;

D. Application of FCFS-LRH on MPI jobs

An example will given to explain the FCFS-LRH. The
number of virtual nodes (v0-v4) used must be the same as the

physical compute nodes MaxCN=5(c0-c4) used. Table 3

shows the order of reservation arrivals, where JumCN≤
MaxCN and JumJob are the number of jobs users submitted.

Suppose the parameters given by userId=4 as in Table 3 are

as follows: userId4 orders three timeslots on timeslots 2 to 4,

takes two compute nodes for 1 independent job, and cannot

be shifted (tesr=2, tlsr=2 , te=3, jumCN=2, jumJob=1).

TABLE III

RESERVATION PARAMETERS IN MPI JOBS

UserId tesr tlsr te JumCN JumJob

1 2 2 2 1 1
2 2 2 3 1 1
3 2 2 5 1 1
4 2 2 3 2 1
5 4 4 2 1 1
6 5 5 2 1 1

7 5 5 1 2 1
8 6 6 4 3 1
9 7 7 1 1 1
10 8 8 2 1 1
11 8 8 4 1 1
12 9 10 3 2 1

Fig 4 shows the FCFS-LRH results for MPI jobs. The x-

axis shows the timeslot, and the y-axis shows the virtual

compute nodes. Since there are five virtual compute nodes,

which will be displayed on the y-axis. Twelve user

reservations have been allocated from timeslot 2 to 12.

Consider userId6 from Table 3. The virtual node assigned to

userId6 is in the timeslot (tesr=5) with compute node v2, and

in timeslot 6 with compute node v1, it is only one job.

(requires two-time slots) that the user has submitted. Suppose

three timeslots ranging from timeslot 8 to 13 are ordered by

userId13, require two compute nodes for one independent job

and can be shifted to timeslot

13(tesr=8,tlsr=13,te=3,jumCN=2,jumJob=1). See Fig 5.

Fig. 4 Allocation of ten reservations in virtual resources

Fig. 5 Reservations from new users on MPI jobs

Fig. 6 Reservations from new users have allocated using FCFS-LRH (Virtual)

Fig 6 shows that user13 will be rejected if the reservation

is made using conventional reservation or rigid reservation.

The same jobs in the same timeslot are allocated to different
virtual compute nodes. If the reservation is successful a

notification will be sent to the user only once. The FCFS-LRH

scheduling approach works on the virtual view, whereas in

other methods, it must send the revisions made[30].

E. Mapping from Virtual Nodes to Actual Computing Nodes

The FCFS-LRH application for a reservation using MPI

jobs, shown in Fig 7, will be guaranteed that all posts to

executed shown in Fig 8 (Physical).

Fig. 7 Allocation of (virtual) reservations for MPI jobs

Fig. 8 Results of mapping on actual computational nodes for MPI jobs

1297

III. RESULTS AND DISCUSSION

The FCFS-LRH comparison results without a reservation

for µ=3, percentage of flexibility=25%-100% shown in Fig.

9-12, which shows the benefits of FCFS-LRH, better than

without a reservation. Similarly, Fig 13-16 results from the

FCFS-LRH comparison with no reservation starting from µ=4,

percentage of flexibility=25% -100% show better utilization
of FCFS-LRH scheduling than strategies without reservation

resource use strongly influenced by time flexibility(tf). Table

4 summarizes experimental results with µ=3 and µ=4, percent

flexibility between 25%-100%, the number of jobs between

615 to 800. The average usefulness of FCFS-LRH scheduling

is better than the average utilization without reservation. Fig

17 shows where the highest percentage of utilization was

94.95%, obtained when the rate of flexibility was 75% with

µ=3. Fig 18 shows where the highest rate of utilization was

97.43%, received when the rate of flexibility was 100% with

µ=4. While Fig 19 indicates an increase in utilization by
3.97% using FCFS LRH got when the rate of flexibility is

75% with µ=3.
Fig 20 comparison of utilization between FCFS-LRH and

FCFS-EDS. for µ=3. If it is assumed that 2% of jobs have

scheduled to cancel their jobs, and then new jobs are entered,

then resource utilization has increased by an average of 1.38%,

from 2% of jobs that cancel their jobs. Likewise, Fig 21 for

µ=3 shows that if it assumed that 2% of jobs scheduled to

cancel jobs, then there are new jobs coming, then resource

utilization has increased by an average of 1.79% 2% of jobs

that canceled jobs.

Fig. 9 Scheduling of Advance Reservation (FCFS-LRH) and without

reservation, with µ=3, flexibility =25%

Fig. 10 Schedule of Advance Reservation (FCFS-LRH) and without
reservation, with µ = 3, flexibility = 50%

Fig. 11 Scheduling of Advance Reservation (FCFS-LRH) and without

reservation, with µ = 3, flexibility =75%

Fig. 12 Scheduling of Advance Reservation (FCFS-LRH) and without

Reservation, with µ = 3, flexibility = 100%

TABLE IV

FCFS-LRH ADVANCE RESERVATION AND WITHOUT RESERVATION

Total

Job

Flexibility

Percentage

(%)

(µ)

Without

Advance

Reservation

(%)

Advance

Reservation

(%)

FCFS-LRH

615 25 3 92.39 94.88
673 50 3 92.11 94.43
618 75 3 91.14 94.95
601 100 3 91.08 94.68
793 25 4 92.92 96.66

799 50 4 92.37 95.93
800 75 4 90.62 94.74
786 100 4 93.28 97.43

Fig. 13 Scheduling of Advance Reservation (FCFS-LRH) and without

reservation, with µ=4, flexibility=25%

Fig. 14 Schedule of Advance Reservation (FCFS-LRH) and without

reservation, with µ=4, flexibility=50%

Fig. 15 Schedule of Advance Reservation (FCFS-LRH) and without

reservation, with µ=4, flexibility=75%

88
90
92
94
96
98

100

0 50 100 150 200

P
er

ce
n

ta
g

e
o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

84

94

0 50 100 150 200

P
er

ce
n

ta
g

e
o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

84

94

0 50 100 150 200

P
er

ce
n

ta
g
e

o
f

U
ti

li
za

ti
o
n

TimeSlot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

84

89

94

99

0 50 100 150 200 250

P
er

ce
n

ta
g
e

o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

90
92
94
96
98

100

0 50 100 150 200

P
er

ce
n

ta
g

e
o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

90

92

94

96

98

100

0 50 100 150 200

P
er

ce
n

ta
g

e
o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

84

88

92

96

100

0 50 100 150 200

P
er

ce
n

ta
g
e

o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

1298

Fig. 16 Comparison of advance reservation (FCFS-LRH) and without

reservation, with µ=4, flexibility=100%

Fig. 17 Utilization based on percent flexibility with arrival factor (µ=3)

Fig. 18 Utilization based on percent flexibility with arrival factor (µ= 4)

Fig.19 Percentage increase in utilization based on flexibility and arrival

factors.

Fig. 20 Compares the utilization of FCFS-LRH with FCFS-EDS for μ=3,

with 2% of jobs canceling

Fig. 21 Compares the utilization of FCFS-LRH with FCFS-EDS for μ=4,

with 2% of jobs cancelling

IV. CONCLUSION

This paper proposes a reservation strategy called FCFS-

LRH for MPI work. This strategy maps jobs from virtual

nodes to physical nodes, ensuring that jobs allocated to virtual

nodes will be executed on physical resources and obtain

higher resource utilization. Increased use of resources is

strongly influenced by time flexibility (tf). Experimentally the

proposed method was compared with no reservation, where

the results showed that the performance of the proposed

method was better than the reservation strategy approach

without reservation. Scheduling FCFS-LRH compared to
FCFS-EDS in case of job cancellation found that resource

utilization with the proposed method is better.

REFERENCES

[1] M. Caramia, S. Giordani, and A. Iovanella, “Grid scheduling by on-

line rectangle packing,” Networks, vol. 44, no. 2, pp. 106–119, 2004,

doi: 10.1002/net.20021.

[2] K. Czajkowski et al., “A resource management architecture for

metacomputing systems,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1459, pp. 62–

82, 1998, doi: 10.1007/bfb0053981.

[3] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy,

“A distributed resource management architecture that supports

advance reservations and co-allocation,” IEEE Int. Work. Qual. Serv.

IWQoS, no. 1, pp. 27–36, 1999, doi: 10.1109/IWQOS.1999.766475.

[4] A. Sulistio and R. Buyya, “A grid simulation infrastructure supporting

advance reservation,” Proc. IASTED Int. Conf. Parallel Distrib.

Comput. Syst., vol. 16, pp. 1–7, 2004.

[5] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced

reservations,” pp. 127–132, 2002, doi: 10.1109/ipdps.2000.845974.

[6] J. Shi, J. Luo, F. Dong, J. Zhang, and J. Zhang, “Elastic resource

provisioning for scientific workflow scheduling in cloud under budget

and deadline constraints,” Cluster Comput., vol. 19, no. 1, pp. 167–

182, 2016, doi: 10.1007/s10586-015-0530-0.

[7] A. Sulistio, K. H. Kim, and R. Buyya, “On incorporating an on-line

strip packing algorithm into elastic grid reservation-based systems,”

Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, vol. 1, 2007, doi:

10.1109/ICPADS.2007.4447738.

[8] P. Xiao, Z. Hu, X. Li, and L. Yang, “A novel statistic-based relaxed

grid resource reservation strategy,” Proc. 9th Int. Conf. Young Comput.

Sci. ICYCS 2008, no. 2, pp. 703–707, 2008, doi:

10.1109/ICYCS.2008.117.

[9] P. Xiao and Z. Hu, “Two-dimension relaxed reservation policy for

independent tasks in grid computing,” J. Softw., vol. 6, no. 8, pp.

1395–1402, 2011, doi: 10.4304/jsw.6.8.1395-1402.

[10] I. Foster, A. Roy, and V. Sander, “A quality of service architecture that

combines resource reservation and application adaptation,” IEEE Int.

Work. Qual. Serv. IWQoS, vol. 2000-January, no. June, pp. 181–188,

2000, doi: 10.1109/IWQOS.2000.847954.

[11] C. Hu, “Flexible Resource Capacity Reservation Mechanism for

Service Grid Using Slack Time,” J. Comput. Res. Dev., vol. 44, no. 1,

p. 20, 2007, doi: 10.1360/crad20070103.

92

94

96

98

100

0 50 100 150 200

P
er

ce
n

ta
g
e

o
f

U
ti

li
za

ti
o
n

Timeslot

Without

Advance

Reservation

FCFS LRH

Advance

Reservation

88

90

92

94

96

25 50 75 100

P
er

ce
n

ta
g
e

o
f

U
ti

li
za

ti
o
n

Flexibility Percentage

Without Advance

Reservation

FCFS-LRH

Advance

Reservation

85

90

95

100

25 50 75 100

P
er

ce
n

ta
g

e
o
f

U
ti

li
za

ti
o
n

Flexibility Percentage

Without Advance

Reservation

FCFS-LRH

Advance

Reservation

0,0

2,0

4,0

6,0

25 50 75 100

In
cr

ea
se

 P
er

ce
n

ta
g

e

Flexibility Percentage

µ=3

µ=4

90

92

94

96

0 25 50 75 100125150

P
er

ce
n

ta
g
e

O
f

U
ti

li
za

ti
o
n

Timeslot

FCFS-LRH

FCFS-EDS

60

70

80

90

100

40 65 90115140165190215240

P
er

ce
n

ta
g
e

o
f

U
n

ti
li

za
ti

o
n

TimeSlot

FCFS-EDS

FCFS-LRH

1299

[12] M. Barshan, H. Moens, B. Volckaert, and F. De Turck, “A

comparative analysis of flexible and fixed size timeslots for advance

bandwidth reservations in media production networks,” 2016 7th Int.

Conf. Netw. Futur. NOF 2016, 2017, doi: 10.1109/NOF.2016.7810118.

[13] M. Barshan, H. Moens, J. Famaey, and F. De Turck, “Deadline-aware

advance reservation scheduling algorithms for media production

networks,” Comput. Commun., vol. 77, no. 2015, pp. 26–40, 2016, doi:

10.1016/j.comcom.2015.10.016.

[14] B. Li, Y. Pei, H. Wu, and B. Shen, “Resource availability-aware

advance reservation for parallel jobs with deadlines,” J. Supercomput.,

vol. 68, no. 2, pp. 798–819, 2014, doi: 10.1007/s11227-013-1067-8.

[15] C. Castillo, G. N. Rouskas, and K. Harfoush, “Online algorithms for

advance resource reservations,” J. Parallel Distrib. Comput., vol. 71,

no. 7, pp. 963–973, 2011, doi: 10.1016/j.jpdc.2011.01.003.

[16] F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, and C. Pérez,

“Resource management architecture for fair scheduling of optional

computations,” Proc. - 2013 8th Int. Conf. P2P, Parallel, Grid, Cloud

Internet Comput. 3PGCIC 2013, pp. 113–120, 2013, doi:

10.1109/3PGCIC.2013.23.

[17] E. Gomes and M. A. R. Dantas, “Towards a resource reservation

approach for an opportunistic computing environment,” J. Phys. Conf.

Ser., vol. 540, no. 1, 2014, doi: 10.1088/1742-6596/540/1/012002.

[18] R. Umar, A. Agarwal, and C. R. Rao, “Advance Planning and

Reservation in a Grid System,” Commun. Comput. Inf. Sci., vol. 293

PART 1, pp. 161–173, 2012, doi: 10.1007/978-3-642-30507-8_15.

[19] L. Grandinetti, F. Guerriero, L. Di Puglia Pugliese, and M.

Sheikhalishahi, “Heuristics for the local grid scheduling problem with

processing time constraints,” J. Heuristics, vol. 21, no. 4, pp. 523–547,

2015, doi: 10.1007/s10732-015-9287-0.

[20] A. Mishra, “An enhanced and effective preemption based scheduling

for grid computing enabling backfilling technique,” Conf. Proceeding

- 2015 Int. Conf. Adv. Comput. Eng. Appl. ICACEA 2015, pp. 1015–

1018, 2015, doi: 10.1109/ICACEA.2015.7164855.

[21] R. Istrate, A. Poenaru, and F. Pop, “Advance reservation system for

datacenters,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, vol. 2016-

May, pp. 637–644, 2016, doi: 10.1109/AINA.2016.106.

[22] A. Sulistio et al., “An Adaptive Scoring Job Scheduling algorithm for

grid computing,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5, no. 1, pp. 68–

72, 2015, doi: 10.1177/1094342006068414.

[23] O. Dakkak, S. Awang Nor, and S. Arif, “Scheduling through

backfilling technique for HPC applications in grid computing

environment,” ICOS 2016 - 2016 IEEE Conf. Open Syst., pp. 30–35,

2017, doi: 10.1109/ICOS.2016.7881984.

[24] S. Leonenkov and S. Zhumatiy, “Introducing New Backfill-based

Scheduler for SLURM Resource Manager,” Procedia Comput. Sci.,

vol. 66, pp. 661–669, 2015, doi: 10.1016/j.procs.2015.11.075.

[25] A. Shukla, S. Kumar, and H. Singh, “An improved resource allocation

model for grid computing environment,” Int. J. Intell. Eng. Syst., vol.

12, no. 1, pp. 104–113, 2019, doi: 10.22266/IJIES2019.0228.11.

[26] A. Pujiyanta, L. E. Nugroho, and Widyawan, “Planning and

Scheduling Jobs on Grid Computing,” Proceeding - 2018 Int. Symp.

Adv. Intell. Informatics Revolutionize Intell. Informatics Spectr.

Humanit. SAIN 2018, pp. 162–166, 2019, doi:

https://doi.org/10.1109/SAIN.2018.8673372.

[27] M. Carvalho and F. Brasileiro, “A user-based model of grid computing

workloads,” in 2012 ACM/IEEE 13th International Conference on

Grid Computing, 2012, pp. 40–48, doi: 10.1109/Grid.2012.13.

[28] A. Hirales-Carbajal, J.-L. González-García, and A. Tchernykh,

“Workload Generation for Trace Based Grid Simulations,” in

Procedding of the Ist international supercomputer conference in

Mexico ISUM., 2010, pp. 1–9.

[29] A. Iosup, D. H. J. Epema, J. Maassen, and R. Van Nieuwpoort,

“Synthetic grid workloads with Ibis, KOALA, and GRENCHMARK,”

in Integrated Research in GRID Computing - CoreGRID Integration

Workshop 2005, Selected Papers, 2007, pp. 271–283, doi:

10.1007/978-0-387-47658-2_20.

[30] B. Barzegar, A. M. Rahmani, K. Zamanifar, and A. Divsalar,

“Gravitational emulation local search algorithm for advanced

reservation and scheduling in grid computing systems,” ICCIT 2009 -

4th Int. Conf. Comput. Sci. Converg. Inf. Technol., pp. 1240–1245,

2009, doi: 10.1109/ICCIT.2009.319.

1300

