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Abstract— Over the last few decades, prolonged drought in Indonesia has led to a catastrophic wildfire hazard, including on 
Kalimantan Island. The Barito River basin is one of the major river basins on the island, located in South and Central Kalimantan 
Provinces. According to The Indonesian National Board for Disaster Management (BNPB), the drought hazard index in the southern 
part of Kalimantan is mostly at the medium to high-risk level. In terms of Integrated Water Resources (IWRM), more detailed 
drought risk analysis needs to be conducted at the river basin level, so that drought adaptation and mitigation strategies can be 
integrated into long-term river basin management plans. In this study, a drought projection of the Barito River basin was simulated 
by using the Coupled Model Intercomparison Project 5 (CMIP5). A coarse grid of CMIP5 data was statistically downscaled to a 
smaller grid over the basin area. Data from climatology observation stations and Climate Forecast System Reanalysis (CFSR) were 
used to calibrate the bias correction function of the CMIP5 data. This function for rainfall data was developed based on the rainfall 
probability curve, while the bias correction function for temperature data was developed based on the elevation-temperature relation. 
The bias-corrected rainfall and temperature data were used as input for the Keetch-Byram Drought Index (KBDI) analysis. The 
study shows that the potential for drought hazard may increase in the future. Drought projection in the Barito basin for 2050 using 
KBDI shows that the potential areas with medium and high drought risk may cover around 50% and 2%, respectively, or about 
35,000km2 and 1,400km2. The occurrence of wildfires also has a strong correlation with the drought index. A comparison between 
1998 and 2015 fire hotspot data shows that most hotspots were located in areas in the medium and high drought risk categories. The 
study shows the importance of climate change impact analysis to prevent more catastrophic hazards in the future, especially in the 
Barito River basin, Kalimantan Island. 
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I. INTRODUCTION 

Over the last few decades, climate change has led to more 
catastrophic droughts and forest fires.  Although 
anthropogenic factors contribute greatly to fire hazard, a 
combination of forest clearance by fire and natural factors 
such as low soil moisture and low rainfall might lead to a 
higher rate of forest fires [1]–[3]. Kalimantan is the island 
with largest tropical forest cover in Indonesia. However, 
rapid forest degradation since the 1970s has reduced this 
coverage from 71% in the 1980s to 54% in the 2000s [4]. 
Such degradation also leads to an increase in the forest fire 
hazard [5], [6]. One example is the long drought in Indonesia, 
which occurred during the El Niño event of 1997-1998, and 
was followed by fires which destroyed 8 million hectares of 
forest [7]. Two provinces that experience drought frequently 
are South Kalimantan and Central Kalimantan. Based on 

information from the Banjarbaru Meteorological Agency in 
South Kalimantan, the drought risk in this area is relatively 
high. From early 2015 to 31st August 2015, no rain fell for 
60 to 76 days in almost all areas of this part of the island. 
Because drought has extensive and multi-sectoral negative 
effects (economy, health, education, food, etc.), citizens and 
government need to have information about drought 
projections so that mitigation and adaptation plans can be 
implemented in advance [8].  

Many methods have been developed to estimate climate 
parameters for hydrological simulations; for example, the 
stochastic approach [9], trendlines and satellites [10], [11], 
and GCM [12], [13]. Several studies have used the output of 
climate change simulation scenarios for drought analysis, 
such as Li et al [14].  The purpose of this study is to simulate 
the projection of climate change effects on drought risk in 
the Barito basin up to 2050.  This will assist the government 
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in mitigation and adaptation plans to minimize the losses 
caused by climate change, especially drought, in Indonesia. 

II. MATERIALS AND METHOD 

The study consists of three main parts: 1) bias correction 
of rainfall data obtained from the Climate Forecast System 
Reanalysis (CFSR) and the National Centres for 
Environmental Prediction (NCEP); 2) statistical downscaling 
of global climate model output for the case study of the 
Barito basin; and 3) drought index analysis using the 
Keetch-Byram Drought Index (KBDI). 

A. KBDI 

KBDI is a drought index developed for the purpose of 
forest fire control in Florida, USA [15]. The index represents 
the drought level of soil moisture, which is calculated based 
on daily weather data. The index ranges from 0 to 800 if 
rainfall is measured in inches, and 0 to 2000 if measured in 
mm. The value of KBDI is calculated based on the following 
equation: 

����� ��	
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) = ∑ ��������� ��	
 − (10�) + 	� ����� (1) 
 

where: 
R = net rainfall  
DF = modified drought factor used to estimate fire hazard, 
with the following formulation: 

	� =  (�������� !)"�.$%&%('.'()* × ,-./01.**2)�3.��$4
(5���)"565�.33(7'.''1)* ×899:.;)4      (2) 

where: 
YKBDI = yesterday’s drought index 
Tmax = maximum temperature (oC) 
Annual = average annual rainfall (mm) 
 

KBDI is widely used in drought and forest fire studies. 
For example, it was employed to estimate the spatial and 
temporal variability of forest fire potential in Lebanon [16]. 
In other case studies, KBDI and EVI were used to assess the 
effect of the seasonal variability of precipitation and drought 
on paddy fields in Indonesia [17], while KBDI (with 
adjustment for local climate) and the water table effect were 
used to assess forest fire hazard in tropical wetlands [18]. 

B. Data collection  

CFSR provides gridded data of climate parameters, such 
as daily temperature and rainfall, and has been used in many 
studies; for example, Darfia et al [19]. This study uses daily 
rainfall data, daily temperature, daily average temperature, 
daily maximum temperature, and the elevation of the 
climatological station. The satellite rainfall data were taken 
from CFSR data, with 74 grids within the Barito basin area. 
The GCM output used was the multi model means of the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) 
compiled by the Netherlands Meteorological Agency 
(KNMI), for RCP scenario 6. There are six grids (grid size = 
2.5o x 2.5o) of the GCM data located in the Barito basin, as 
shown in Figure 1. 

C. Bias Correction of CSFR Rainfall Data 

Bias correction is used to match the statistical 
characteristics of coarse grid satellite or GCM output with 

the data from climatological stations (observational data). 
There are several examples of studies related to the 
application of the bias correction method; for example, using 
bias correction based on quantile mapping to adjust GCM 
and RCM output in South East Asia [20], and its use to 
correct TRMM data for drought index analysis in Central 
Java, Indonesia [21]. 

In this study, bias correction was used to adjust CFSR for 
further use in the Barito basin. Since the northern part of the 
basin has a limited number of meteorological stations, the 
corrected CFSR data were used to ensure that the drought 
index for areas with limited or no fixed data could be 
calculated. A comparison between observational and CFSR 
data was conducted within one GCM grid. The rainfall 
probability curve for both sets of data was compared to 
determine the correction function of the CFSR data. This 
process was conducted to ensure that the corrected CFSR 
data had similar statistical characteristics to the available 
observed data by applying the correction function on the 
rainfall probability density curve. 

 
Fig. 1  GCM grid in Barito basin 

D. Statistical Downscaling of GCM Rainfall and 
Temperature Output 

Rainfall and temperature data from a GCM grid size of 
2.5o x 2.5o (about 300km2) were statistically downscaled to 
CFSR grid size (about 33.3km2). The timescale of the 
downscaled data is monthly, while calculation of the drought 
index using KBDI employed daily data. Therefore, 
stochastic analysis was conducted to generate daily rainfall 
series based on monthly rainfall from the probability curve 
of historical daily rainfall data. 

 

 
Fig. 2  Relation between temperature and elevation 

 
Temperature downscaling was conducted based on the 

relationship between the elevation of the station and the 
average observational temperature on each grid at the station, 
so that the equation of the trend-line curve could be obtained. 
Figure 2 shows the relationship between temperature and 
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elevation, where delta (Δ) represents the difference between 
the average temperatures in RCP in grid (B) and the 
temperature of the average grid elevation (A). C is the GCM 
temperature, which is calculated in the nth year. 

Equation (3) is used as a correction function of the GCM 
temperature output:  

< = [>(���?�@A?�) + ∆ − C + D] (3) 
where: 
T = corrected temperature in nth year 
Δ = difference between A and B 
A = temperature at average grid elevation  
B = average temperature in RCP on grid 
C = GCM temperature data in nth year 

The corrected average monthly temperature data were 
then linearly interpolated into daily data based on the 
assumption that average monthly temperatures occur in the 
middle of the month (15th day).  

E. Comparison between KBDI and fire hotspot data  

The spatial distribution of the computed KBDI was 
compared with the fire hotspot data in Barito basin from the 
same year. In this case, hotspot data from 1998 and 2015 
were used.  

III.  RESULTS AND DISCUSSION 

F. Bias Correction of CFSR Rainfall Data 

The correction factor was obtained by comparing the 
CFRS rainfall probability curve and the observational data 
within the same period. Due to limited observational data, 
the above comparison was conducted using different periods. 
Grids one and two use data from 1999 to 2005; grid three 
uses data from 2000 to 2012, while grid four use data from 
1994 to 2004. The results of the above comparison were four 
sets of equations, which were applied to each grid. An 
example of a set of equations for grid 1 is shown in Figure 3 

 
Fig. 3  Rainfall probability in grid 1 

 
From the trend-line equation on the probability of rainfall 

occurrence, the values of coefficients m and c for linear 
function y =mx + c can be obtained, which are shown in 
Table I. A comparison between CFSR and observational 
data (before and after correction) can be seen in Figure 4. 
Figure 4A shows a wide gap between the CFSR rainfall 
probability curve and the observational data, while Figure 
4B shows the coincidence of the curve and data. The 
coinciding curves show that the corrected CFSR data and 
observational data have similar statistical characteristics, 
meaning that the corrected CFSR can be used to represent 

historical rainfall data in the Barito basin for the drought 
analysis. 

 
TABLE I 

RAINFALL CORRECTION FACTORS 

GRID 1 
Prob < 1% 1% < Prob >14.35% Prob > 14.35% 

m c m c m c 
1.1954 1.2267 -0.0804 2.2963 -0.0513 1.9314 

GRID 2 
Prob < 0.95% 0.95%<Prob>9.87% Prob > 9.87% 
m c m c m c 

0.5641 1.273 -0.092 1.8422 -0.0247 1.1644 
GRID 3 

Prob < 4.35 % Prob > 4.35 % 
m c m c 

0.2022 0.9924 -0.073 2.328 
GRID 4 

Prob < 2.43% 2.43% <Prob> 20% Prob > 20% 
m c m c m c 

0.2901 1.0638 -0.0569 1.7217 -0.0493 1.669 

 

 
A: before correction 

 
B: after correction 

Fig. 4  Rainfall probability curve in grid 1 before and after correction 
 
The corrected value for each grid is assumed to be valid in 

the middle of the grid. Therefore, it is necessary to 
interpolate the correction factor by using the spatial 
averaging method. In this study, the Inverse Distance Weight 
(IDW) method was used, which takes the distance of each 
CFSR grid to the midpoint of the GCM grid. An example 
plot of the corrected CFSR rainfall in the Barito basin is 
shown in Figure 5. 

G. Statistical Downscaling of GCM Data 

Monthly GCM output from the multi-model mean of 
CMIP5 was used as input for analysis of future rainfall and 
temperature trends. The comparison between GCM output 
and historical data also shows a wide gap. Therefore, the 
same bias correction method procedure was also applied to 

y = 1,1954x + 1,2267

y = -0,0804x + 2,2963
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the GCM output by comparing monthly GCM data and the 
corrected CFSR from 1979 to 2013.  

 

 
Fig. 5  CFSR Rainfall distribution December 31, 2013 

 
Since KBDI use daily time series, stochastic analysis was 

made to generate daily series from monthly data of the GCM 
output. Daily rainfall series were generated based on the 
trend of the number of rainy days in a month at the available 
rainfall observation station. The approach used to generate 
daily rainfall from the corrected GCM output is as follows:  

 

F��GHIJ
K = JL.M9
JN.O

 (4) 

P = ��?�(0 − 1) (5) 

��A?QRS = TU�5(V, X, P); >�� P Z F��GHIJ
K
0; >�� P [ F��GHIJ
K

 (6) 

��A?HIJ
K′ = ∑ ��A?QRS
JN.O
Q]5  (7) 

��A?QRS′ = ��A?QRS
^R_J-`9ab
^R_J-`9abc (8) 

where:  
probmonth = the probability of rainfall occurrence in a 
month  
x = a random figure between 0 and 1  
nrain = the average number of rain days in a month  
nday = the number of days in a month  
γ-1(α,β,x) = the Inverse Gamma Distribution of daily 

rainfall in upper CRB. 

The plot of monthly rainfall and number of rainy days 
from the available station data, which were used as the basis 
for the stochastic analysis, is shown in Figure 6. By 
assuming that monthly rainfall is linear with the number of 
rainy days in a month, the trend-line equation in Figure 6 can 
be used to estimate the number of rainy days from the 
monthly rainfall data. For example, in the wet season, with 
rainfall of 600mm/month, the estimated number of rainy 
days is 23, while in the dry season, with rainfall 
100mm/month, the estimated number of rainy days is 8. 

 

 
Fig. 6  Monthly rainfall vs rainy days in wet and dry seasons in the Barito 
basin 

Output examples of the downscaled rainfall and 
temperature are shown in Figures 7 and 8. Figures 7 and 8 
show that the upstream part of the Barito basin tends to have 
higher monthly rainfall (300-600mm/month) and lower 
average temperature (15-22.5oC). Meanwhile, the 
downstream part of the basin tends to have lower monthly 
rainfall (0-200/month) and higher average temperature 
(22.5-30oC). From the above trends, it is expected that the 
downstream part has a higher risk of drought than the 
upstream. 

H. KBDI analysis 

KBDI values were calculated on daily basis to obtain the 
average monthly values. The data used to calculate these 
values started from January 1st each year, up to the last year 
of rainfall and temperature statistical downscaling data. 
Examples of the KBDI analysis results from CFSR grid 50 
are shown in Tables II and III. 

 

 
Fig. 7  Output example of downscaled GCM rainfall in the Barito basin 
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Fig. 8  Output example of downscaled GCM temperature in the Barito basin 

 

TABLE II 
OUTPUT EXAMPLE OF MONTHLY KBDI  VALUES IN THE BARITO BASIN 

 

TABLE III 
OUTPUT EXAMPLE OF DROUGHT CLASSIFICATION IN THE BARITO BASIN 

Notes: L=low, M=medium, H=high, X=extreme 

I. Comparison between KBDI and hotspot data 

The drought indices of 1998 and 2015, calculated by 
using the corrected GCM data, were compared with hotspot 
data from the same year. A comparison between KBDI and 
the hotspot data is shown in Figure 9.  

 

 

Fig. 9  Comparison between KBDI and fire hotspots in 1998 and 2015 

Figure 9 shows that although hotspots also occur in areas 
with a low category drought index, most occur in areas in the 
medium and high categories. For example, in 2015, most 
hotspots occurred in the southern part of the Barito basin in 
areas corresponding to the medium to high drought index. 
The above comparison shows that even in the medium 
category, the occurrence of forest fires is relatively high. It 
also indicates that drought and fire hazards might increase 
more in the northern part of the basin.  

J. Future drought projection  

A drought projection was conducted by applying the 
corrected GCM rainfall and temperature data as input into 
KBDI computation from 2030 to 2050. Output examples of 
this projection are shown in Figure 10.  

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1997 - 387 793 1138 1096 1101 1292 1433 1549 1549 1586 1507
1998 1290 882 1140 1226 1139 1229 1043 1345 1572 1492 1599 1251

2031 76 665 956 1059 1182 1184 1266 1380 1622 1663 1633 1349
2032 1294 1115 1058 1362 1009 1170 1288 1629 1527 1625 1622 1511
2033 1521 1090 1207 1168 1272 1226 1209 1394 1599 1699 1647 1364
2034 1308 1041 1035 1336 853 983 1113 1487 1584 17291750 1479
2035 1228 1179 1061 1128 974 1272 1288 1574 1597 1595 1633 1436

2046 - 434 914 907 1146 1228 1297 1396 16431787 1769 1576
2047 1119 1078 1233 1244 1028 1193 1278 1447 1574 1703 1489 1424
2048 1219 1009 1149 1135 1156 1336 1337 1354 15731760 1770 1448
2049 1147 1033 1048 1169 1103 1088 1378 1402 1519 1689 1707 1454
2050 1233 1286 1049 1382 983 1219 1190 1620 1395 1667 1647 1399

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1997 L L M M M M M H H H H
1998 M L M M M M M M H M H M

2031 L L L M M M M M H H H M
2032 M M M M M M M H H H H H
2033 H M M M M M M M H H H M
2034 M M M M L L M M H H X M
2035 M M M M L M M H H H H M

2046 L L L M M M M H X X H
2047 M M M M M M M M H H M M
2048 M M M M M M M M H X X M
2049 M M M M M M M M H H H M
2050 M M M M L M M H M H H M

Legend 
• Hotspot 1998 
Drought Index 1998 

Legend 
• Hotspot Sept 2015 
Drought Index Sept 2015 
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Fig. 10  Output example of drought projection in 2034 and 2048  

Drought projection for the 2030s (October 2034 is taken 
as an output sample) shows the areas in the high category 
drought index in the southern part of the Barito basin. 
Meanwhile, the projection for the period of the 2040s 
(October 2048 is taken as sample output) shows an increase 
in areas within the high category drought index in the central 
part of the basin.  

The projection of the drought index from 2046 to 2050 
shows that high levels will increase by 1,400 km2 compared 
to the period 2031-2035. The projection of the areas 
corresponding to the medium drought index tends to increase 
every year. By 2050, it is estimated that the medium drought 
index area will reach 35,000 km2, which is more than 50% 
of the total basin area.  

Drought evolves over a relatively long period. 
Appropriate adaptation and mitigation efforts, together with 
improvement in monitoring systems, might be effective in 
reducing its negative impacts in the future [8]. Water-saving 
technologies, water infrastructure development, increasing 
water productivity, and changes to crop systems might be a 
good adaptation strategy in the future [22]. 

IV.  CONCLUSION  

GCM data can be used as input data for drought analysis 
after being corrected by observation station data. Direct use 
of GCM without applying such a correction factor may 
result in highly biased results. Drought analysis using KBDI 
shows relatively good correlation with historical drought 
data, as can be seen in comparison with the spatial and 
temporal distribution of hotspot data. The results of KBDI 
using the corrected GCM data from 1998 and 2015 as input 
correlate well with the hotspot distribution data. Therefore, 
the corrected GCM data can be used to project future 
droughts. 

Droughts in the high and extreme categories tend to occur 
in the southern part of the Barito basin, while those in the 
medium category tend to be spread across the basin, from 
south to north. Only a small part of the mountainous area in 
the north of the basin shows a low drought index. The 
projected drought indexes up to 2050 indicate that medium 
drought risk might occur every year, with the greatest 
possibility in October and November. Hotspot data from 
2015 show that even medium drought index hotspots may 
spread out over the basin. Therefore, it is necessary to 
develop appropriate integrated adaptation and mitigation 
strategies, together with improvements in monitoring 
systems, to prevent drought and forest fire disasters in the 
future.  
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